BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 23548163)

  • 1. Simulated microgravity facilitates cell migration and neuroprotection after bone marrow stromal cell transplantation in spinal cord injury.
    Mitsuhara T; Takeda M; Yamaguchi S; Manabe T; Matsumoto M; Kawahara Y; Yuge L; Kurisu K
    Stem Cell Res Ther; 2013 Apr; 4(2):35. PubMed ID: 23548163
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simulated microgravity maintains the undifferentiated state and enhances the neural repair potential of bone marrow stromal cells.
    Yuge L; Sasaki A; Kawahara Y; Wu SL; Matsumoto M; Manabe T; Kajiume T; Takeda M; Magaki T; Takahashi T; Kurisu K; Matsumoto M
    Stem Cells Dev; 2011 May; 20(5):893-900. PubMed ID: 20828292
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simulated microgravity inhibits the proliferation and osteogenesis of rat bone marrow mesenchymal stem cells.
    Dai ZQ; Wang R; Ling SK; Wan YM; Li YH
    Cell Prolif; 2007 Oct; 40(5):671-84. PubMed ID: 17877609
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tanshinone IIA promotes the differentiation of bone marrow mesenchymal stem cells into neuronal-like cells in a spinal cord injury model.
    Zhang XM; Ma J; Sun Y; Yu BQ; Jiao ZM; Wang D; Yu MY; Li JY; Fu J
    J Transl Med; 2018 Jul; 16(1):193. PubMed ID: 30001730
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simulated microgravity-cultured mesenchymal stem cells improve recovery following spinal cord ischemia in rats.
    Kurose T; Takahashi S; Otsuka T; Nakagawa K; Imura T; Sueda T; Yuge L
    Stem Cell Res; 2019 Dec; 41():101601. PubMed ID: 31731179
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Alterations in Nuclear Lamina and the Cytoskeleton of Bone Marrow-Derived Human Mesenchymal Stem Cells Cultured Under Simulated Microgravity Conditions.
    Koaykul C; Kim MH; Kawahara Y; Yuge L; Kino-Oka M
    Stem Cells Dev; 2019 Sep; 28(17):1167-1176. PubMed ID: 31169056
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact of intravenously administered cranial bone-derived mesenchymal stem cells on functional recovery in experimental spinal cord injury.
    Shimizu K; Mitsuhara T; Maeda Y; Kuwabara M; Hosogai M; Takeda M; Yuge L; Horie N
    Neurosci Lett; 2023 Mar; 799():137103. PubMed ID: 36738956
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Effects of bone marrow mesenchymal stem cells with acellular muscle bioscaffolds on repair of acute hemi-transection spinal cord injury in rats].
    Wei X; Wen Y; Zhang T; Li H
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2012 Nov; 26(11):1362-8. PubMed ID: 23230674
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transplanting p75-suppressed bone marrow stromal cells promotes functional behavior in a rat model of spinal cord injury.
    Edalat H; Hajebrahimi Z; Pirhajati V; Movahedin M; Tavallaei M; Soroush MR; Mowla SJ
    Iran Biomed J; 2013; 17(3):140-5. PubMed ID: 23748892
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of functional and histological outcomes after intralesional, intracisternal, and intravenous transplantation of human bone marrow-derived mesenchymal stromal cells in a rat model of spinal cord injury.
    Shin DA; Kim JM; Kim HI; Yi S; Ha Y; Yoon DH; Kim KN
    Acta Neurochir (Wien); 2013 Oct; 155(10):1943-50. PubMed ID: 23821338
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mesenchymal stem cells as an alternative for Schwann cells in rat spinal cord injury.
    Zaminy A; Shokrgozar MA; Sadeghi Y; Noroozian M; Heidari MH; Piryaei A
    Iran Biomed J; 2013; 17(3):113-22. PubMed ID: 23748888
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The SDF-1/CXCR4 axis promotes recovery after spinal cord injury by mediating bone marrow-derived from mesenchymal stem cells.
    Wang GD; Liu YX; Wang X; Zhang YL; Zhang YD; Xue F
    Oncotarget; 2017 Feb; 8(7):11629-11640. PubMed ID: 28099928
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of Mesenchymal Stromal Cells Isolated from Murine Adipose Tissue and Bone Marrow in the Treatment of Spinal Cord Injury.
    Takahashi A; Nakajima H; Uchida K; Takeura N; Honjoh K; Watanabe S; Kitade M; Kokubo Y; Johnson WEB; Matsumine A
    Cell Transplant; 2018 Jul; 27(7):1126-1139. PubMed ID: 29947256
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transplantation of human bone marrow-derived clonal mesenchymal stem cells reduces fibrotic scar formation in a rat spinal cord injury model.
    Kim M; Kim KH; Song SU; Yi TG; Yoon SH; Park SR; Choi BH
    J Tissue Eng Regen Med; 2018 Feb; 12(2):e1034-e1045. PubMed ID: 28112873
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of SDF-1/CXCR4 axis on the migration of transplanted bone mesenchymal stem cells mobilized by erythropoietin toward lesion sites following spinal cord injury.
    Li J; Guo W; Xiong M; Han H; Chen J; Mao D; Tang B; Yu H; Zeng Y
    Int J Mol Med; 2015 Nov; 36(5):1205-14. PubMed ID: 26398409
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Combination of activated Schwann cells with bone mesenchymal stem cells: the best cell strategy for repair after spinal cord injury in rats.
    Ban DX; Ning GZ; Feng SQ; Wang Y; Zhou XH; Liu Y; Chen JT
    Regen Med; 2011 Nov; 6(6):707-20. PubMed ID: 22050523
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gravity, a regulation factor in the differentiation of rat bone marrow mesenchymal stem cells.
    Huang Y; Dai ZQ; Ling SK; Zhang HY; Wan YM; Li YH
    J Biomed Sci; 2009 Sep; 16(1):87. PubMed ID: 19772591
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polypyrrole/polylactic acid nanofibrous scaffold cotransplanted with bone marrow stromal cells promotes the functional recovery of spinal cord injury in rats.
    Raynald ; Shu B; Liu XB; Zhou JF; Huang H; Wang JY; Sun XD; Qin C; An YH
    CNS Neurosci Ther; 2019 Sep; 25(9):951-964. PubMed ID: 31486601
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transplantation of bone marrow mesenchymal stem cells pretreated with valproic acid in rats with an acute spinal cord injury.
    Chen L; Cui X; Wu Z; Jia L; Yu Y; Zhou Q; Hu X; Xu W; Luo D; Liu J; Xiao J; Yan Q; Cheng L
    Biosci Trends; 2014 Apr; 8(2):111-9. PubMed ID: 24815388
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CD157 in bone marrow mesenchymal stem cells mediates mitochondrial production and transfer to improve neuronal apoptosis and functional recovery after spinal cord injury.
    Li J; Li H; Cai S; Bai S; Cai H; Zhang X
    Stem Cell Res Ther; 2021 May; 12(1):289. PubMed ID: 34001228
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.