These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
195 related articles for article (PubMed ID: 23548183)
1. Dynamic metabolic modeling of a microaerobic yeast co-culture: predicting and optimizing ethanol production from glucose/xylose mixtures. Hanly TJ; Henson MA Biotechnol Biofuels; 2013 Apr; 6(1):44. PubMed ID: 23548183 [TBL] [Abstract][Full Text] [Related]
2. Dynamic flux balance modeling of microbial co-cultures for efficient batch fermentation of glucose and xylose mixtures. Hanly TJ; Henson MA Biotechnol Bioeng; 2011 Feb; 108(2):376-85. PubMed ID: 20882517 [TBL] [Abstract][Full Text] [Related]
3. Dynamic flux balance modeling of S. cerevisiae and E. coli co-cultures for efficient consumption of glucose/xylose mixtures. Hanly TJ; Urello M; Henson MA Appl Microbiol Biotechnol; 2012 Mar; 93(6):2529-41. PubMed ID: 22005741 [TBL] [Abstract][Full Text] [Related]
4. Cell-recycle batch process of Scheffersomyces stipitis and Saccharomyces cerevisiae co-culture for second generation bioethanol production. Ashoor S; Comitini F; Ciani M Biotechnol Lett; 2015 Nov; 37(11):2213-8. PubMed ID: 26198848 [TBL] [Abstract][Full Text] [Related]
5. Co-fermentation of cellobiose and xylose by mixed culture of recombinant Saccharomyces cerevisiae and kinetic modeling. Chen Y; Wu Y; Zhu B; Zhang G; Wei N PLoS One; 2018; 13(6):e0199104. PubMed ID: 29940003 [TBL] [Abstract][Full Text] [Related]
6. Ethanol production from wheat straw by Saccharomyces cerevisiae and Scheffersomyces stipitis co-culture in batch and continuous system. Karagöz P; Özkan M Bioresour Technol; 2014 Apr; 158():286-93. PubMed ID: 24614063 [TBL] [Abstract][Full Text] [Related]
8. Fermentation of mixed glucose-xylose substrates by engineered strains of Saccharomyces cerevisiae: role of the coenzyme specificity of xylose reductase, and effect of glucose on xylose utilization. Krahulec S; Petschacher B; Wallner M; Longus K; Klimacek M; Nidetzky B Microb Cell Fact; 2010 Mar; 9():16. PubMed ID: 20219100 [TBL] [Abstract][Full Text] [Related]
9. Improved ethanol productivity and ethanol tolerance through genome shuffling of Saccharomyces cerevisiae and Pichia stipitis. Jetti KD; Gns RR; Garlapati D; Nammi SK Int Microbiol; 2019 Jun; 22(2):247-254. PubMed ID: 30810988 [TBL] [Abstract][Full Text] [Related]
10. Conversion of xylose to ethanol by recombinant Saccharomyces cerevisiae: importance of xylulokinase (XKS1) and oxygen availability. Toivari MH; Aristidou A; Ruohonen L; Penttilä M Metab Eng; 2001 Jul; 3(3):236-49. PubMed ID: 11461146 [TBL] [Abstract][Full Text] [Related]
11. Optimized fed-batch fermentation of Scheffersomyces stipitis for efficient production of ethanol from hexoses and pentoses. Unrean P; Nguyen NH Appl Biochem Biotechnol; 2013 Mar; 169(6):1895-909. PubMed ID: 23344940 [TBL] [Abstract][Full Text] [Related]
12. Dynamic model-based analysis of furfural and HMF detoxification by pure and mixed batch cultures of S. cerevisiae and S. stipitis. Hanly TJ; Henson MA Biotechnol Bioeng; 2014 Feb; 111(2):272-84. PubMed ID: 23983023 [TBL] [Abstract][Full Text] [Related]
13. Dynamic flux balance analysis of batch fermentation: effect of genetic manipulations on ethanol production. Lisha KP; Sarkar D Bioprocess Biosyst Eng; 2014 Apr; 37(4):617-27. PubMed ID: 23921448 [TBL] [Abstract][Full Text] [Related]
14. Bioethanol production by recycled Scheffersomyces stipitis in sequential batch fermentations with high cell density using xylose and glucose mixture. Santos SC; de Sousa AS; Dionísio SR; Tramontina R; Ruller R; Squina FM; Vaz Rossell CE; da Costa AC; Ienczak JL Bioresour Technol; 2016 Nov; 219():319-329. PubMed ID: 27498013 [TBL] [Abstract][Full Text] [Related]
15. Bioethanol production from mixed sugars by Scheffersomyces stipitis free and immobilized cells, and co-cultures with Saccharomyces cerevisiae. De Bari I; De Canio P; Cuna D; Liuzzi F; Capece A; Romano P N Biotechnol; 2013 Sep; 30(6):591-7. PubMed ID: 23454083 [TBL] [Abstract][Full Text] [Related]
16. Effects of aeration on growth, ethanol and polyol accumulation by Spathaspora passalidarum NRRL Y-27907 and Scheffersomyces stipitis NRRL Y-7124. Su YK; Willis LB; Jeffries TW Biotechnol Bioeng; 2015 Mar; 112(3):457-69. PubMed ID: 25164099 [TBL] [Abstract][Full Text] [Related]
17. Ethanol production improvement driven by genome-scale metabolic modeling and sensitivity analysis in Scheffersomyces stipitis. Acevedo A; Conejeros R; Aroca G PLoS One; 2017; 12(6):e0180074. PubMed ID: 28658270 [TBL] [Abstract][Full Text] [Related]
18. Genome-scale analysis of Saccharomyces cerevisiae metabolism and ethanol production in fed-batch culture. Hjersted JL; Henson MA; Mahadevan R Biotechnol Bioeng; 2007 Aug; 97(5):1190-204. PubMed ID: 17243146 [TBL] [Abstract][Full Text] [Related]
19. Online monitoring of the redox potential in microaerobic and anaerobic Scheffersomyces stipitis fermentations. Bonan CIDG; Biazi LE; Santos SC; Soares LB; Dionísio SR; Hoffmam ZB; Costa AC; Ienczak JL Biotechnol Lett; 2019 Jul; 41(6-7):753-761. PubMed ID: 30963342 [TBL] [Abstract][Full Text] [Related]