BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 23548297)

  • 1. Modeling the growth of Listeria monocytogenes in mold-ripened cheeses.
    Lobacz A; Kowalik J; Tarczynska A
    J Dairy Sci; 2013 Jun; 96(6):3449-60. PubMed ID: 23548297
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling the growth of Listeria monocytogenes on the surface of smear- or mold-ripened cheese.
    Schvartzman MS; Gonzalez-Barron U; Butler F; Jordan K
    Front Cell Infect Microbiol; 2014; 4():90. PubMed ID: 25072033
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Camembert-type cheese quality and safety implications in relation to the timing of high-pressure processing during aging.
    Batty D; Meunier-Goddik L; Waite-Cusic JG
    J Dairy Sci; 2019 Oct; 102(10):8721-8733. PubMed ID: 31400901
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fate of Listeria monocytogenes and members of the Enterobacteriaceae group along the processing line of 'Wara' a Southwestern Nigeria soft cheese.
    Adetunji VO; Chen J
    Afr J Med Med Sci; 2010 Dec; 39 Suppl():185-91. PubMed ID: 22416662
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Loss of viability of Listeria monocytogenes in contaminated processed cheese during storage at 4, 12 and 22 degrees C.
    Angelidis AS; Boutsiouki P; Papageorgiou DK
    Food Microbiol; 2010 Sep; 27(6):809-18. PubMed ID: 20630324
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A quasi-chemical model for the growth and death of microorganisms in foods by non-thermal and high-pressure processing.
    Doona CJ; Feeherry FE; Ross EW
    Int J Food Microbiol; 2005 Apr; 100(1-3):21-32. PubMed ID: 15854689
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 60-day aging requirement does not ensure safety of surface-mold-ripened soft cheeses manufactured from raw or pasteurized milk when Listeria monocytogenes is introduced as a postprocessing contaminant.
    D'Amico DJ; Druart MJ; Donnelly CW
    J Food Prot; 2008 Aug; 71(8):1563-71. PubMed ID: 18724749
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predictive modeling for growth of non- and cold-adapted Listeria monocytogenes on fresh-cut cantaloupe at different storage temperatures.
    Hong YK; Yoon WB; Huang L; Yuk HG
    J Food Sci; 2014 Jun; 79(6):M1168-74. PubMed ID: 24754226
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predicting growth of Listeria monocytogenes at dynamic conditions during manufacturing, ripening and storage of cheeses - Evaluation and application of models.
    Martinez-Rios V; Gkogka E; Dalgaard P
    Food Microbiol; 2020 Dec; 92():103578. PubMed ID: 32950162
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modelling the effect of lactic acid bacteria from starter- and aroma culture on growth of Listeria monocytogenes in cottage cheese.
    Østergaard NB; Eklöw A; Dalgaard P
    Int J Food Microbiol; 2014 Oct; 188():15-25. PubMed ID: 25086348
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Growth of Listeria monocytogenes in Camembert and other soft cheeses at refrigeration temperatures.
    Back JP; Langford SA; Kroll RG
    J Dairy Res; 1993 Aug; 60(3):421-9. PubMed ID: 8376636
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modelling the growth kinetics of Listeria monocytogenes in pasta salads at different storage temperatures and packaging conditions.
    De Cesare A; Vitali S; Tessema GT; Trevisani M; Fagereng TM; Beaufort A; Manfreda G; Skjerdal T
    Food Microbiol; 2018 Dec; 76():154-163. PubMed ID: 30166136
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of micro-architectural structure of cabbage substratum and or background bacterial flora on the growth of Listeria monocytogenes.
    Ongeng D; Ryckeboer J; Vermeulen A; Devlieghere F
    Int J Food Microbiol; 2007 Nov; 119(3):291-9. PubMed ID: 17910986
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A study on the kinetic behavior of Listeria monocytogenes in ice cream stored under static and dynamic chilling and freezing conditions.
    Gougouli M; Angelidis AS; Koutsoumanis K
    J Dairy Sci; 2008 Feb; 91(2):523-30. PubMed ID: 18218738
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of live-culture-producing lacticin 3147 as a treatment for the control of Listeria monocytogenes on the surface of smear-ripened cheese.
    O'Sullivan L; O'connor EB; Ross RP; Hill C
    J Appl Microbiol; 2006; 100(1):135-43. PubMed ID: 16405693
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A radial basis function neural network approach to determine the survival of Listeria monocytogenes in Katiki, a traditional Greek soft cheese.
    Panagou EZ
    J Food Prot; 2008 Apr; 71(4):750-9. PubMed ID: 18468029
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Determination of the growth potential of Listeria monocytogenes in various types of Belgian artisanal cheeses by challenge tests.
    Gérard A; El-Hajjaji S; Van Coillie E; Bentaïb A; Daube G; Sindic M
    Food Microbiol; 2020 Dec; 92():103582. PubMed ID: 32950166
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamic modeling of Listeria monocytogenes growth in pasteurized milk.
    Xanthiakos K; Simos D; Angelidis AS; Nychas GJ; Koutsoumanis K
    J Appl Microbiol; 2006 Jun; 100(6):1289-98. PubMed ID: 16696676
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Survival of Listeria monocytogenes during the manufacture and ripening of Turkish white cheese.
    Erkmen O
    Nahrung; 2001 Feb; 45(1):55-8. PubMed ID: 11253643
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessing the capacity of growth, survival, and acid adaptive response of Listeria monocytogenes during storage of various cheeses and subsequent simulated gastric digestion.
    Kapetanakou AE; Gkerekou MA; Vitzilaiou ES; Skandamis PN
    Int J Food Microbiol; 2017 Apr; 246():50-63. PubMed ID: 28189900
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.