These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 23548565)

  • 1. The zerovalent iron nanoparticle causes higher developmental toxicity than its oxidation products in early life stages of medaka fish.
    Chen PJ; Wu WL; Wu KC
    Water Res; 2013 Aug; 47(12):3899-909. PubMed ID: 23548565
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differential alteration in reproductive toxicity of medaka fish on exposure to nanoscale zerovalent iron and its oxidation products.
    Yang CH; Kung TA; Chen PJ
    Environ Pollut; 2019 Sep; 252(Pt B):1920-1932. PubMed ID: 31227347
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stabilization or oxidation of nanoscale zerovalent iron at environmentally relevant exposure changes bioavailability and toxicity in medaka fish.
    Chen PJ; Tan SW; Wu WL
    Environ Sci Technol; 2012 Aug; 46(15):8431-9. PubMed ID: 22747062
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Toxicity assessments of nanoscale zerovalent iron and its oxidation products in medaka (Oryzias latipes) fish.
    Chen PJ; Su CH; Tseng CY; Tan SW; Cheng CH
    Mar Pollut Bull; 2011; 63(5-12):339-46. PubMed ID: 21440267
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanoscale zerovalent iron (nZVI) at environmentally relevant concentrations induced multigenerational reproductive toxicity in Caenorhabditis elegans.
    Yang YF; Chen PJ; Liao VH
    Chemosphere; 2016 May; 150():615-623. PubMed ID: 26830375
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impact of surface modification on the toxicity of zerovalent iron nanoparticles in aquatic and terrestrial organisms.
    Yoon H; Pangging M; Jang MH; Hwang YS; Chang YS
    Ecotoxicol Environ Saf; 2018 Nov; 163():436-443. PubMed ID: 30075446
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dose- and time-related changes in aerobic metabolism, chorionic disruption, and oxidative stress in embryonic medaka (Oryzias latipes): underlying mechanisms for silver nanoparticle developmental toxicity.
    Wu Y; Zhou Q
    Aquat Toxicol; 2012 Nov; 124-125():238-46. PubMed ID: 22982501
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Carboxymethyl cellulose coating decreases toxicity and oxidizing capacity of nanoscale zerovalent iron.
    Zhou L; Thanh TL; Gong J; Kim JH; Kim EJ; Chang YS
    Chemosphere; 2014 Jun; 104():155-61. PubMed ID: 24287261
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transport of carboxymethyl cellulose-coated zerovalent iron nanoparticles in a sand tank: Effects of sand grain size, nanoparticle concentration and injection velocity.
    Li J; Rajajayavel SRC; Ghoshal S
    Chemosphere; 2016 May; 150():8-16. PubMed ID: 26891351
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanoscale zerovalent iron particles induce differential cytotoxicity, genotoxicity, oxidative stress and hemolytic responses in human lymphocytes and erythrocytes in vitro.
    Ghosh I; Mukherjee A; Mukherjee A
    J Appl Toxicol; 2019 Dec; 39(12):1623-1639. PubMed ID: 31355497
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The biochemical and toxicological responses of earthworm (Eisenia fetida) following exposure to nanoscale zerovalent iron in a soil system.
    Liang J; Xia X; Zhang W; Zaman WQ; Lin K; Hu S; Lin Z
    Environ Sci Pollut Res Int; 2017 Jan; 24(3):2507-2514. PubMed ID: 27822688
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The dual effects of carboxymethyl cellulose on the colloidal stability and toxicity of nanoscale zero-valent iron.
    Dong H; Xie Y; Zeng G; Tang L; Liang J; He Q; Zhao F; Zeng Y; Wu Y
    Chemosphere; 2016 Feb; 144():1682-9. PubMed ID: 26519799
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Toxicity assessment of zero valent iron nanoparticles on Artemia salina.
    Kumar D; Roy R; Parashar A; Raichur AM; Chandrasekaran N; Mukherjee A; Mukherjee A
    Environ Toxicol; 2017 May; 32(5):1617-1627. PubMed ID: 28101988
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ethanol-induced attenuation of oxidative stress is unable to alter mRNA expression pattern of catalase, glutathione reductase, glutathione-S-transferase (GST1A), and superoxide dismutase (SOD3) enzymes in Japanese rice fish (Oryzias latipes) embryogenesis.
    Wu M; Shariat-Madar B; Haron MH; Wu M; Khan IA; Dasmahapatra AK
    Comp Biochem Physiol C Toxicol Pharmacol; 2011 Jan; 153(1):159-67. PubMed ID: 20965276
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In planta genotoxicity of nZVI: influence of colloidal stability on uptake, DNA damage, oxidative stress and cell death.
    Ghosh I; Mukherjee A; Mukherjee A
    Mutagenesis; 2017 May; 32(3):371-387. PubMed ID: 28371930
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stepwise embryonic toxicity of silver nanoparticles on Oryzias latipes.
    Cho JG; Kim KT; Ryu TK; Lee JW; Kim JE; Kim J; Lee BC; Jo EH; Yoon J; Eom IC; Choi K; Kim P
    Biomed Res Int; 2013; 2013():494671. PubMed ID: 23984374
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The toxicity of titanium dioxide nanopowder to early life stages of the Japanese medaka (Oryzias latipes).
    Paterson G; Ataria JM; Hoque ME; Burns DC; Metcalfe CD
    Chemosphere; 2011 Feb; 82(7):1002-9. PubMed ID: 21074241
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Field Deployable Chemical Redox Probe for Quantitative Characterization of Carboxymethylcellulose Modified Nano Zerovalent Iron.
    Fan D; Chen S; Johnson RL; Tratnyek PG
    Environ Sci Technol; 2015 Sep; 49(17):10589-97. PubMed ID: 26218836
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The embryotoxicity of ZnO nanoparticles to marine medaka, Oryzias melastigma.
    Cong Y; Jin F; Wang J; Mu J
    Aquat Toxicol; 2017 Apr; 185():11-18. PubMed ID: 28157544
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of silver nanoparticles on the development and histopathology biomarkers of Japanese medaka (Oryzias latipes) using the partial-life test.
    Wu Y; Zhou Q; Li H; Liu W; Wang T; Jiang G
    Aquat Toxicol; 2010 Oct; 100(2):160-7. PubMed ID: 20034681
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.