These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Beyond proteinuria: VDR activation reduces renal inflammation in experimental diabetic nephropathy. Sanchez-Niño MD; Bozic M; Córdoba-Lanús E; Valcheva P; Gracia O; Ibarz M; Fernandez E; Navarro-Gonzalez JF; Ortiz A; Valdivielso JM Am J Physiol Renal Physiol; 2012 Mar; 302(6):F647-57. PubMed ID: 22169009 [TBL] [Abstract][Full Text] [Related]
4. VDR Activation Reduces Proteinuria and High-Glucose-Induced Injury of Kidneys and Podocytes by Regulating Wnt Signaling Pathway. Guo J; Lu C; Zhang F; Yu H; Zhou M; He M; Wang C; Zhao Z; Liu Z Cell Physiol Biochem; 2017; 43(1):39-51. PubMed ID: 28848172 [TBL] [Abstract][Full Text] [Related]
5. Glucose-induced gradual phenotypic modulation of cultured human glomerular epithelial cells may be independent of Wilms' tumor 1 (WT1). Tsotakos NE; Sagnou M; Kotsopoulou ES; Tsilibary EC; Drossopoulou GI BMC Cell Biol; 2013 Jun; 14():28. PubMed ID: 23768159 [TBL] [Abstract][Full Text] [Related]
6. Molecular mechanism underlying 1,25-dihydroxyvitamin D regulation of nephrin gene expression. Deb DK; Wang Y; Zhang Z; Nie H; Huang X; Yuan Z; Chen Y; Zhao Q; Li YC J Biol Chem; 2011 Sep; 286(37):32011-7. PubMed ID: 21803771 [TBL] [Abstract][Full Text] [Related]
7. Induction of nephrin gene expression by selective cooperation of the retinoic acid receptor and the vitamin D receptor. Okamura M; Takano Y; Saito Y; Yao J; Kitamura M Nephrol Dial Transplant; 2009 Oct; 24(10):3006-12. PubMed ID: 19474283 [TBL] [Abstract][Full Text] [Related]
8. 1,25-Dihydroxyvitamin D3 stimulates cyclic vitamin D receptor/retinoid X receptor DNA-binding, co-activator recruitment, and histone acetylation in intact osteoblasts. Kim S; Shevde NK; Pike JW J Bone Miner Res; 2005 Feb; 20(2):305-17. PubMed ID: 15647825 [TBL] [Abstract][Full Text] [Related]
9. Impaired transcription factor interplay in addition to advanced glycation end products suppress podocalyxin expression in high glucose-treated human podocytes. Drossopoulou GI; Tsotakos NE; Tsilibary EC Am J Physiol Renal Physiol; 2009 Sep; 297(3):F594-603. PubMed ID: 19605546 [TBL] [Abstract][Full Text] [Related]
10. Activation of vitamin D receptor attenuates high glucose-induced cellular injury partially dependent on CYP2J5 in murine renal tubule epithelial cell. Liu Y; Li L; Yi B; Hu ZX; Li AM; Yang C; Zheng L; Zhang H Life Sci; 2019 Oct; 234():116755. PubMed ID: 31415769 [TBL] [Abstract][Full Text] [Related]
11. Suppression of nephrin expression by TNF-alpha via interfering with the cAMP-retinoic acid receptor pathway. Saito Y; Okamura M; Nakajima S; Hayakawa K; Huang T; Yao J; Kitamura M Am J Physiol Renal Physiol; 2010 Jun; 298(6):F1436-44. PubMed ID: 20237236 [TBL] [Abstract][Full Text] [Related]
12. The Therapeutic Effect of Active Vitamin D Supplementation in Preventing the Progression of Diabetic Nephropathy in a Diabetic Mouse Model. Nakhoul N; Thawko T; Farber E; Dahan I; Tadmor H; Nakhoul R; Hanut A; Salameh G; Shagrawy I; Nakhoul F J Diabetes Res; 2020; 2020():7907605. PubMed ID: 33294462 [TBL] [Abstract][Full Text] [Related]
13. Paricalcitol (19-nor-1,25-dihydroxyvitamin D2) and calcitriol (1,25-dihydroxyvitamin D3) exert potent immunomodulatory effects on dendritic cells and inhibit induction of antigen-specific T cells. Sochorová K; Budinský V; Rozková D; Tobiasová Z; Dusilová-Sulková S; Spísek R; Bartůnková J Clin Immunol; 2009 Oct; 133(1):69-77. PubMed ID: 19660988 [TBL] [Abstract][Full Text] [Related]
14. GSK-3β and vitamin D receptor are involved in β-catenin and snail signaling in high glucose-induced epithelial-mesenchymal transition of mouse podocytes. Guo J; Xia N; Yang L; Zhou S; Zhang Q; Qiao Y; Liu Z Cell Physiol Biochem; 2014; 33(4):1087-96. PubMed ID: 24732862 [TBL] [Abstract][Full Text] [Related]
15. Vitamin D and proteinuria: a critical review of molecular bases and clinical experience. Pérez-Gómez MV; Ortiz-Arduán A; Lorenzo-Sellares V Nefrologia; 2013; 33(5):716-26. PubMed ID: 24089164 [TBL] [Abstract][Full Text] [Related]
16. Vitamin D Receptor/Vitamin D Response Element Directly Modulate Nestin Transcription to Ameliorate PAN-Induced Podocyte Morphological Changes. Zhang Q; Jiang X; Wen D; Zhang Y; Mao J; Ni L; Chen J Nephron; 2022; 146(6):624-636. PubMed ID: 35526529 [TBL] [Abstract][Full Text] [Related]
17. Antagonistic effects of transforming growth factor-beta on vitamin D3 enhancement of osteocalcin and osteopontin transcription: reduced interactions of vitamin D receptor/retinoid X receptor complexes with vitamin E response elements. Staal A; Van Wijnen AJ; Desai RK; Pols HA; Birkenhäger JC; Deluca HF; Denhardt DT; Stein JL; Van Leeuwen JP; Stein GS; Lian JB Endocrinology; 1996 May; 137(5):2001-11. PubMed ID: 8612541 [TBL] [Abstract][Full Text] [Related]
18. Transrepression of the estrogen receptor promoter by calcitriol in human breast cancer cells via two negative vitamin D response elements. Swami S; Krishnan AV; Peng L; Lundqvist J; Feldman D Endocr Relat Cancer; 2013 Aug; 20(4):565-77. PubMed ID: 23744764 [TBL] [Abstract][Full Text] [Related]
19. Vitamin D receptor activation in a diabetic-like environment: potential role in the activity of the endothelial pro-inflammatory and thioredoxin pathways. Zitman-Gal T; Golan E; Green J; Bernheim J; Benchetrit S J Steroid Biochem Mol Biol; 2012 Oct; 132(1-2):1-7. PubMed ID: 22531461 [TBL] [Abstract][Full Text] [Related]
20. Thyroid hormone receptor does not heterodimerize with the vitamin D receptor but represses vitamin D receptor-mediated transactivation. Raval-Pandya M; Freedman LP; Li H; Christakos S Mol Endocrinol; 1998 Sep; 12(9):1367-79. PubMed ID: 9731705 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]