BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 23550134)

  • 1. Inferring gene function and network organization in Drosophila signaling by combined analysis of pleiotropy and epistasis.
    Carter GW
    G3 (Bethesda); 2013 May; 3(5):807-14. PubMed ID: 23550134
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A map of directional genetic interactions in a metazoan cell.
    Fischer B; Sandmann T; Horn T; Billmann M; Chaudhary V; Huber W; Boutros M
    Elife; 2015 Mar; 4():. PubMed ID: 25748138
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Time-resolved mapping of genetic interactions to model rewiring of signaling pathways.
    Heigwer F; Scheeder C; Miersch T; Schmitt B; Blass C; Pour Jamnani MV; Boutros M
    Elife; 2018 Dec; 7():. PubMed ID: 30592458
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genetic architecture of natural variation in Drosophila melanogaster aggressive behavior.
    Shorter J; Couch C; Huang W; Carbone MA; Peiffer J; Anholt RR; Mackay TF
    Proc Natl Acad Sci U S A; 2015 Jul; 112(27):E3555-63. PubMed ID: 26100892
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Extensive epistasis for olfactory behaviour, sleep and waking activity in Drosophila melanogaster.
    Swarup S; Harbison ST; Hahn LE; Morozova TV; Yamamoto A; Mackay TF; Anholt RR
    Genet Res (Camb); 2012 Feb; 94(1):9-20. PubMed ID: 22353245
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Combined Analysis of Pleiotropy and Epistasis (CAPE).
    Tyler AL; Emerson J; El Kassaby B; Wells AE; Philip VM; Carter GW
    Methods Mol Biol; 2021; 2212():55-67. PubMed ID: 33733350
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CAPE: an R package for combined analysis of pleiotropy and epistasis.
    Tyler AL; Lu W; Hendrick JJ; Philip VM; Carter GW
    PLoS Comput Biol; 2013 Oct; 9(10):e1003270. PubMed ID: 24204223
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gene regulatory networks controlling hematopoietic progenitor niche cell production and differentiation in the Drosophila lymph gland.
    Tokusumi Y; Tokusumi T; Shoue DA; Schulz RA
    PLoS One; 2012; 7(7):e41604. PubMed ID: 22911822
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dissection of complex gene expression using the combined analysis of pleiotropy and epistasis.
    Philip VM; Tyler AL; Carter GW
    Pac Symp Biocomput; 2014; ():200-11. PubMed ID: 24297548
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Epistatic Networks Jointly Influence Phenotypes Related to Metabolic Disease and Gene Expression in Diversity Outbred Mice.
    Tyler AL; Ji B; Gatti DM; Munger SC; Churchill GA; Svenson KL; Carter GW
    Genetics; 2017 Jun; 206(2):621-639. PubMed ID: 28592500
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mapping of signaling networks through synthetic genetic interaction analysis by RNAi.
    Horn T; Sandmann T; Fischer B; Axelsson E; Huber W; Boutros M
    Nat Methods; 2011 Apr; 8(4):341-6. PubMed ID: 21378980
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Selection for long and short sleep duration in Drosophila melanogaster reveals the complex genetic network underlying natural variation in sleep.
    Harbison ST; Serrano Negron YL; Hansen NF; Lobell AS
    PLoS Genet; 2017 Dec; 13(12):e1007098. PubMed ID: 29240764
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional genomic analysis of the Wnt-wingless signaling pathway.
    DasGupta R; Kaykas A; Moon RT; Perrimon N
    Science; 2005 May; 308(5723):826-33. PubMed ID: 15817814
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A transcriptional network associated with natural variation in Drosophila aggressive behavior.
    Edwards AC; Ayroles JF; Stone EA; Carbone MA; Lyman RF; Mackay TF
    Genome Biol; 2009; 10(7):R76. PubMed ID: 19607677
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Kinome RNAi Screen in
    Parsons LM; Grzeschik NA; Amaratunga K; Burke P; Quinn LM; Richardson HE
    G3 (Bethesda); 2017 Aug; 7(8):2497-2509. PubMed ID: 28611255
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Widespread Rewiring of Genetic Networks upon Cancer Signaling Pathway Activation.
    Billmann M; Chaudhary V; ElMaghraby MF; Fischer B; Boutros M
    Cell Syst; 2018 Jan; 6(1):52-64.e4. PubMed ID: 29199019
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genome-wide epistasis and pleiotropy characterized by the bipartite human phenotype network.
    Darabos C; Moore JH
    Methods Mol Biol; 2015; 1253():269-83. PubMed ID: 25403537
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genetic interaction screens identify a role for hedgehog signaling in Drosophila border cell migration.
    Geisbrecht ER; Sawant K; Su Y; Liu ZC; Silver DL; Burtscher A; Wang X; Zhu AJ; McDonald JA
    Dev Dyn; 2013 May; 242(5):414-31. PubMed ID: 23335293
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Using the bipartite human phenotype network to reveal pleiotropy and epistasis beyond the gene.
    Darabos C; Harmon SH; Moore JH
    Pac Symp Biocomput; 2014; ():188-99. PubMed ID: 24297546
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Epistatic partners of neurogenic genes modulate Drosophila olfactory behavior.
    He X; Zhou S; St Armour GE; Mackay TF; Anholt RR
    Genes Brain Behav; 2016 Feb; 15(2):280-90. PubMed ID: 26678546
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.