BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 2355030)

  • 1. The use of quantitative computed tomography to estimate risk of fracture of the hip from falls.
    Lotz JC; Hayes WC
    J Bone Joint Surg Am; 1990 Jun; 72(5):689-700. PubMed ID: 2355030
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biomechanics of fracture risk prediction of the hip and spine by quantitative computed tomography.
    Hayes WC; Piazza SJ; Zysset PK
    Radiol Clin North Am; 1991 Jan; 29(1):1-18. PubMed ID: 1985322
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biomechanical properties of the proximal femur determined in vitro by single-energy quantitative computed tomography.
    Esses SI; Lotz JC; Hayes WC
    J Bone Miner Res; 1989 Oct; 4(5):715-22. PubMed ID: 2816516
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Contribution of trochanteric soft tissues to fall force estimates, the factor of risk, and prediction of hip fracture risk.
    Bouxsein ML; Szulc P; Munoz F; Thrall E; Sornay-Rendu E; Delmas PD
    J Bone Miner Res; 2007 Jun; 22(6):825-31. PubMed ID: 17352651
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Risk of hip fractures in the elderly: biomechanical aspects of the falling process].
    Boonen S; Pelemans W; Broos P
    Tijdschr Gerontol Geriatr; 1997 Aug; 28(4):172-7. PubMed ID: 9526786
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Age-related reductions in the strength of the femur tested in a fall-loading configuration.
    Courtney AC; Wachtel EF; Myers ER; Hayes WC
    J Bone Joint Surg Am; 1995 Mar; 77(3):387-95. PubMed ID: 7890787
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact loading history modulates hip fracture load and location: A finite element simulation study of the proximal femur in female athletes.
    Abe S; Narra N; Nikander R; Hyttinen J; Kouhia R; Sievänen H
    J Biomech; 2018 Jul; 76():136-143. PubMed ID: 29921524
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Energy-shunting external hip protector attenuates the peak femoral impact force below the theoretical fracture threshold: an in vitro biomechanical study under falling conditions of the elderly.
    Parkkari J; Kannus P; Heikkilä J; Poutala J; Sievänen H; Vuori I
    J Bone Miner Res; 1995 Oct; 10(10):1437-42. PubMed ID: 8686498
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proximal femoral bone density and its correlation to fracture load and hip-screw penetration load.
    Smith MD; Cody DD; Goldstein SA; Cooperman AM; Matthews LS; Flynn MJ
    Clin Orthop Relat Res; 1992 Oct; (283):244-51. PubMed ID: 1395253
    [TBL] [Abstract][Full Text] [Related]  

  • 10. New QCT analysis approach shows the importance of fall orientation on femoral neck strength.
    Carpenter RD; Beaupré GS; Lang TF; Orwoll ES; Carter DR;
    J Bone Miner Res; 2005 Sep; 20(9):1533-42. PubMed ID: 16059625
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biomechanical considerations of hip and spine fractures in osteoporotic bone.
    Hayes WC; Myers ER
    Instr Course Lect; 1997; 46():431-8. PubMed ID: 9143985
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fracture prediction for the proximal femur using finite element models: Part II--Nonlinear analysis.
    Lotz JC; Cheal EJ; Hayes WC
    J Biomech Eng; 1991 Nov; 113(4):361-5. PubMed ID: 1762431
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Trochanteric bone mineral density is associated with type of hip fracture in the elderly.
    Greenspan SL; Myers ER; Maitland LA; Kido TH; Krasnow MB; Hayes WC
    J Bone Miner Res; 1994 Dec; 9(12):1889-94. PubMed ID: 7872054
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Do all hip fractures result from a fall?
    Youm T; Koval KJ; Kummer FJ; Zuckerman JD
    Am J Orthop (Belle Mead NJ); 1999 Mar; 28(3):190-4. PubMed ID: 10195844
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel sideways fall simulator to study hip fractures ex vivo.
    Fleps I; Vuille M; Melnyk A; Ferguson SJ; Guy P; Helgason B; Cripton PA
    PLoS One; 2018; 13(7):e0201096. PubMed ID: 30040858
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intracapsular hip fracture and the region-specific loss of cortical bone: analysis by peripheral quantitative computed tomography.
    Crabtree N; Loveridge N; Parker M; Rushton N; Power J; Bell KL; Beck TJ; Reeve J
    J Bone Miner Res; 2001 Jul; 16(7):1318-28. PubMed ID: 11450708
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Non-skeletal determinants of fractures: the potential importance of the mechanics of falls. Study of Osteoporotic Fractures Research Group.
    Cummings SR; Nevitt MC
    Osteoporos Int; 1994; 4 Suppl 1():67-70. PubMed ID: 8081063
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hip fractures. Epidemiology, risk factors, falls, energy absorption, hip protectors, and prevention.
    Lauritzen JB
    Dan Med Bull; 1997 Apr; 44(2):155-68. PubMed ID: 9151010
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Relationship between structural parameters, bone mineral density and fracture load in lumbar vertebrae, based on high-resolution computed tomography, quantitative computed tomography and compression tests.
    Haidekker MA; Andresen R; Werner HJ
    Osteoporos Int; 1999; 9(5):433-40. PubMed ID: 10550463
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pelvis and femur geometry: Relationships with impact characteristics during sideways falls on the hip.
    Levine IC; Pretty SP; Nouri PK; Mourtzakis M; Laing AC
    J Biomech; 2018 Oct; 80():72-78. PubMed ID: 30201251
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.