These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 23550515)

  • 1. Characterization of genes for a putative hydroxycinnamoyl-coenzyme A quinate transferase and p-coumarate 3'-hydroxylase and chlorogenic acid accumulation in tartary buckwheat.
    Kim YB; Thwe AA; Kim YJ; Li X; Kim HH; Park PB; Suzuki T; Kim SJ; Park SU
    J Agric Food Chem; 2013 May; 61(17):4120-6. PubMed ID: 23550515
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of cDNA encoding resveratrol synthase and accumulation of resveratrol in tartary buckwheat.
    Kim YB; Thwe AA; Kim Y; Yeo SK; Lee C; Park SU
    Nat Prod Commun; 2013 Nov; 8(11):1571-4. PubMed ID: 24427944
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular characterisation and the light-dark regulation of carotenoid biosynthesis in sprouts of tartary buckwheat (Fagopyrum tataricum Gaertn.).
    Tuan PA; Thwe AA; Kim JK; Kim YB; Lee S; Park SU
    Food Chem; 2013 Dec; 141(4):3803-12. PubMed ID: 23993552
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cloning and characterization of a cDNA coding a hydroxycinnamoyl-CoA quinate hydroxycinnamoyl transferase involved in chlorogenic acid biosynthesis in Lonicera japonica.
    Peng X; Li W; Wang W; Bai G
    Planta Med; 2010 Nov; 76(16):1921-6. PubMed ID: 20539970
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential stress-response expression of two flavonol synthase genes and accumulation of flavonols in tartary buckwheat.
    Li X; Kim YB; Kim Y; Zhao S; Kim HH; Chung E; Lee JH; Park SU
    J Plant Physiol; 2013 Dec; 170(18):1630-6. PubMed ID: 23859559
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differential expression of anthocyanin biosynthetic genes and anthocyanin accumulation in tartary buckwheat cultivars 'Hokkai t8' and 'Hokkai t10'.
    Park NI; Li X; Suzuki T; Kim SJ; Woo SH; Park CH; Park SU
    J Agric Food Chem; 2011 Mar; 59(6):2356-61. PubMed ID: 21366292
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Accumulation of phenylpropanoids and correlated gene expression during the development of tartary buckwheat sprouts.
    Li X; Thwe AA; Park NI; Suzuki T; Kim SJ; Park SU
    J Agric Food Chem; 2012 Jun; 60(22):5629-35. PubMed ID: 22587625
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Isolation and functional characterization of a cDNA coding a hydroxycinnamoyltransferase involved in phenylpropanoid biosynthesis in Cynara cardunculus L.
    Comino C; Lanteri S; Portis E; Acquadro A; Romani A; Hehn A; Larbat R; Bourgaud F
    BMC Plant Biol; 2007 Mar; 7():14. PubMed ID: 17374149
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel hydroxycinnamoyl-coenzyme A quinate transferase genes from artichoke are involved in the synthesis of chlorogenic acid.
    Sonnante G; D'Amore R; Blanco E; Pierri CL; De Palma M; Luo J; Tucci M; Martin C
    Plant Physiol; 2010 Jul; 153(3):1224-38. PubMed ID: 20431089
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification and characterization of granule bound starch synthase I (GBSSI) gene of tartary buckwheat (Fagopyrum tataricum Gaertn.).
    Wang X; Feng B; Xu Z; Sestili F; Zhao G; Xiang C; Lafiandra D; Wang T
    Gene; 2014 Jan; 534(2):229-35. PubMed ID: 24211386
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of white, blue, and red light-emitting diodes on carotenoid biosynthetic gene expression levels and carotenoid accumulation in sprouts of tartary buckwheat (Fagopyrum tataricum Gaertn.).
    Tuan PA; Thwe AA; Kim YB; Kim JK; Kim SJ; Lee S; Chung SO; Park SU
    J Agric Food Chem; 2013 Dec; 61(50):12356-61. PubMed ID: 24274859
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dual catalytic activity of hydroxycinnamoyl-coenzyme A quinate transferase from tomato allows it to moonlight in the synthesis of both mono- and dicaffeoylquinic acids.
    Moglia A; Lanteri S; Comino C; Hill L; Knevitt D; Cagliero C; Rubiolo P; Bornemann S; Martin C
    Plant Physiol; 2014 Dec; 166(4):1777-87. PubMed ID: 25301886
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolomic analysis and phenylpropanoid biosynthesis in hairy root culture of tartary buckwheat cultivars.
    Thwe AA; Kim JK; Li X; Kim YB; Uddin MR; Kim SJ; Suzuki T; Park NI; Park SU
    PLoS One; 2013; 8(6):e65349. PubMed ID: 23799007
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolite Profiling and Transcriptome Analyses Provide Insights into the Flavonoid Biosynthesis in the Developing Seed of Tartary Buckwheat (
    Li H; Lv Q; Ma C; Qu J; Cai F; Deng J; Huang J; Ran P; Shi T; Chen Q
    J Agric Food Chem; 2019 Oct; 67(40):11262-11276. PubMed ID: 31509416
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transcripts of anthocyanidin reductase and leucoanthocyanidin reductase and measurement of catechin and epicatechin in tartary buckwheat.
    Kim YB; Thwe AA; Kim Y; Li X; Cho JW; Park PB; Valan Arasu M; Abdullah Al-Dhabi N; Kim SJ; Suzuki T; Hyun Jho K; Park SU
    ScientificWorldJournal; 2014; 2014():726567. PubMed ID: 24605062
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The isolation and mapping of a novel hydroxycinnamoyltransferase in the globe artichoke chlorogenic acid pathway.
    Comino C; Hehn A; Moglia A; Menin B; Bourgaud F; Lanteri S; Portis E
    BMC Plant Biol; 2009 Mar; 9():30. PubMed ID: 19292932
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of light-emitting diodes on expression of phenylpropanoid biosynthetic genes and accumulation of phenylpropanoids in Fagopyrum tataricum sprouts.
    Thwe AA; Kim YB; Li X; Seo JM; Kim SJ; Suzuki T; Chung SO; Park SU
    J Agric Food Chem; 2014 May; 62(21):4839-45. PubMed ID: 24793050
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of two tartary buckwheat R2R3-MYB transcription factors and their regulation of proanthocyanidin biosynthesis.
    Bai YC; Li CL; Zhang JW; Li SJ; Luo XP; Yao HP; Chen H; Zhao HX; Park SU; Wu Q
    Physiol Plant; 2014 Nov; 152(3):431-40. PubMed ID: 24730512
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Early lignin pathway enzymes and routes to chlorogenic acid in switchgrass (Panicum virgatum L.).
    Escamilla-TreviƱo LL; Shen H; Hernandez T; Yin Y; Xu Y; Dixon RA
    Plant Mol Biol; 2014 Mar; 84(4-5):565-76. PubMed ID: 24190737
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Diverse biological effects of glycosyltransferase genes from Tartary buckwheat.
    Yao P; Deng R; Huang Y; Stael S; Shi J; Shi G; Lv B; Li Q; Dong Q; Wu Q; Li C; Chen H; Zhao H
    BMC Plant Biol; 2019 Aug; 19(1):339. PubMed ID: 31382883
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.