BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

314 related articles for article (PubMed ID: 23550527)

  • 41. The NLP toxin family in Phytophthora sojae includes rapidly evolving groups that lack necrosis-inducing activity.
    Dong S; Kong G; Qutob D; Yu X; Tang J; Kang J; Dai T; Wang H; Gijzen M; Wang Y
    Mol Plant Microbe Interact; 2012 Jul; 25(7):896-909. PubMed ID: 22397404
    [TBL] [Abstract][Full Text] [Related]  

  • 42. GmSGT1 is differently required for soybean Rps genes-mediated and basal resistance to Phytophthora sojae.
    Yan Q; Cui X; Su L; Xu N; Guo N; Xing H; Dou D
    Plant Cell Rep; 2014 Aug; 33(8):1275-88. PubMed ID: 24763608
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Transgenerational gene silencing causes gain of virulence in a plant pathogen.
    Qutob D; Chapman BP; Gijzen M
    Nat Commun; 2013; 4():1349. PubMed ID: 23322037
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Identification of candidate signaling genes including regulators of chromosome condensation 1 protein family differentially expressed in the soybean-Phytophthora sojae interaction.
    Narayanan NN; Grosic S; Tasma IM; Grant D; Shoemaker R; Bhattacharyya MK
    Theor Appl Genet; 2009 Feb; 118(3):399-412. PubMed ID: 18825360
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The Phytophthora effector Avh94 manipulates host jasmonic acid signaling to promote infection.
    Zhao Y; Yang B; Xu H; Wu J; Xu Z; Wang Y
    J Integr Plant Biol; 2022 Nov; 64(11):2199-2210. PubMed ID: 36067028
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Lipid profiling of the soybean pathogen Phytophthora sojae using Fatty Acid Methyl Esters (FAMEs).
    Yousef LF; Wojno M; Dick WA; Dick RP
    Fungal Biol; 2012 May; 116(5):613-9. PubMed ID: 22559921
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Increased expression of Phytophthora sojae genes encoding membrane-degrading enzymes appears to suggest an early onset of necrotrophy during Glycine max infection.
    Grams N; Ospina-Giraldo M
    Fungal Genet Biol; 2019 Dec; 133():103268. PubMed ID: 31518653
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Expression of a Phytophthora sojae necrosis-inducing protein occurs during transition from biotrophy to necrotrophy.
    Qutob D; Kamoun S; Gijzen M
    Plant J; 2002 Nov; 32(3):361-73. PubMed ID: 12410814
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Specific molecular detection of Phytophthora sojae using conventional and real-time PCR.
    Bienapfl JC; Malvick DK; Percich JA
    Fungal Biol; 2011 Aug; 115(8):733-40. PubMed ID: 21802053
    [TBL] [Abstract][Full Text] [Related]  

  • 50. PsSAK1, a stress-activated MAP kinase of Phytophthora sojae, is required for zoospore viability and infection of soybean.
    Li A; Wang Y; Tao K; Dong S; Huang Q; Dai T; Zheng X; Wang Y
    Mol Plant Microbe Interact; 2010 Aug; 23(8):1022-31. PubMed ID: 20615113
    [TBL] [Abstract][Full Text] [Related]  

  • 51. PsAAT3, an oomycete-specific aspartate aminotransferase, is required for full pathogenicity of the oomycete pathogen Phytophthora sojae.
    Wang R; Zhang M; Liu H; Xu J; Yu J; He F; Zhang X; Dong S; Dou D
    Fungal Biol; 2016 Apr; 120(4):620-630. PubMed ID: 27020161
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Effector-triggered immunity by the plant pathogen Phytophthora.
    Qutob D; Tedman-Jones J; Gijzen M
    Trends Microbiol; 2006 Nov; 14(11):470-3. PubMed ID: 16996740
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The Phytophthora effector Avh241 interacts with host NDR1-like proteins to manipulate plant immunity.
    Yang B; Yang S; Guo B; Wang Y; Zheng W; Tian M; Dai K; Liu Z; Wang H; Ma Z; Wang Y; Ye W; Dong S; Wang Y
    J Integr Plant Biol; 2021 Jul; 63(7):1382-1396. PubMed ID: 33586843
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Expressed sequence tags from phytophthora sojae reveal genes specific to development and infection.
    Torto-Alalibo TA; Tripathy S; Smith BM; Arredondo FD; Zhou L; Li H; Chibucos MC; Qutob D; Gijzen M; Mao C; Sobral BW; Waugh ME; Mitchell TK; Dean RA; Tyler BM
    Mol Plant Microbe Interact; 2007 Jul; 20(7):781-93. PubMed ID: 17601166
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Genetic mapping and development of co-segregating markers of RpsQ, which provides resistance to Phytophthora sojae in soybean.
    Li Y; Sun S; Zhong C; Wang X; Wu X; Zhu Z
    Theor Appl Genet; 2017 Jun; 130(6):1223-1233. PubMed ID: 28258371
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Soybean root suberin and partial resistance to root rot caused by Phytophthora sojae.
    Ranathunge K; Thomas RH; Fang X; Peterson CA; Gijzen M; Bernards MA
    Phytopathology; 2008 Nov; 98(11):1179-89. PubMed ID: 18943406
    [TBL] [Abstract][Full Text] [Related]  

  • 57. GmBTB/POZ, a novel BTB/POZ domain-containing nuclear protein, positively regulates the response of soybean to Phytophthora sojae infection.
    Zhang C; Gao H; Li R; Han D; Wang L; Wu J; Xu P; Zhang S
    Mol Plant Pathol; 2019 Jan; 20(1):78-91. PubMed ID: 30113770
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Molecular mechanisms of
    Hou X; He Z; Che Z; Li H; Tan X; Wang Q
    Front Microbiol; 2022; 13():1111774. PubMed ID: 36699593
    [No Abstract]   [Full Text] [Related]  

  • 59. A Phytophthora sojae G-protein alpha subunit is involved in chemotaxis to soybean isoflavones.
    Hua C; Wang Y; Zheng X; Dou D; Zhang Z; Govers F; Wang Y
    Eukaryot Cell; 2008 Dec; 7(12):2133-40. PubMed ID: 18931042
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Loci and candidate gene identification for resistance to Phytophthora sojae via association analysis in soybean [Glycine max (L.) Merr].
    Li L; Guo N; Niu J; Wang Z; Cui X; Sun J; Zhao T; Xing H
    Mol Genet Genomics; 2016 Jun; 291(3):1095-103. PubMed ID: 26758588
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.