BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 23550551)

  • 1. A systematic study of the features critical for designing a high avidity multivalent aptamer.
    Zhao X; Lis JT; Shi H
    Nucleic Acid Ther; 2013 Jun; 23(3):238-42. PubMed ID: 23550551
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An RNA aptamer perturbs heat shock transcription factor activity in Drosophila melanogaster.
    Salamanca HH; Fuda N; Shi H; Lis JT
    Nucleic Acids Res; 2011 Aug; 39(15):6729-40. PubMed ID: 21576228
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Insights from yeast into whether the inhibition of heat shock transcription factor (Hsf1) by rapamycin can prevent the Hsf1 activation that results from treatment with an Hsp90 inhibitor.
    Millson SH; Piper PW
    Oncotarget; 2014 Jul; 5(13):5054-64. PubMed ID: 24970820
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inhibiting heat shock factor 1 in human cancer cells with a potent RNA aptamer.
    Salamanca HH; Antonyak MA; Cerione RA; Shi H; Lis JT
    PLoS One; 2014; 9(5):e96330. PubMed ID: 24800749
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Heat shock factor and the heat shock response.
    Sorger PK
    Cell; 1991 May; 65(3):363-6. PubMed ID: 2018972
    [No Abstract]   [Full Text] [Related]  

  • 6. Interaction between heat shock transcription factors (HSFs) and divergent binding sequences: binding specificities of yeast HSFs and human HSF1.
    Sakurai H; Takemori Y
    J Biol Chem; 2007 May; 282(18):13334-41. PubMed ID: 17347150
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of the Hsf1-dependent transcriptome via conserved bipartite contacts with Hsp70 promotes survival in yeast.
    Peffer S; Gonçalves D; Morano KA
    J Biol Chem; 2019 Aug; 294(32):12191-12202. PubMed ID: 31239354
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Knocking down gene function with an RNA aptamer expressed as part of an intron.
    Wang S; Zhao X; Suran R; Vogt VM; Lis JT; Shi H
    Nucleic Acids Res; 2010 Aug; 38(15):e154. PubMed ID: 20542918
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An RNA aptamer that interferes with the DNA binding of the HSF transcription activator.
    Zhao X; Shi H; Sevilimedu A; Liachko N; Nelson HC; Lis JT
    Nucleic Acids Res; 2006; 34(13):3755-61. PubMed ID: 16893958
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Different mechanisms are involved in the transcriptional activation by yeast heat shock transcription factor through two different types of heat shock elements.
    Hashikawa N; Yamamoto N; Sakurai H
    J Biol Chem; 2007 Apr; 282(14):10333-40. PubMed ID: 17289668
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Defining the Essential Function of Yeast Hsf1 Reveals a Compact Transcriptional Program for Maintaining Eukaryotic Proteostasis.
    Solís EJ; Pandey JP; Zheng X; Jin DX; Gupta PB; Airoldi EM; Pincus D; Denic V
    Mol Cell; 2016 Jul; 63(1):60-71. PubMed ID: 27320198
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Saccharomyces cerevisiae heat shock transcription factor regulates cell wall remodeling in response to heat shock.
    Imazu H; Sakurai H
    Eukaryot Cell; 2005 Jun; 4(6):1050-6. PubMed ID: 15947197
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of the heat shock transcription factor Hsf1 in fungi: implications for temperature-dependent virulence traits.
    Veri AO; Robbins N; Cowen LE
    FEMS Yeast Res; 2018 Aug; 18(5):. PubMed ID: 29788061
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of thermotolerance by stress-induced transcription factors in Saccharomyces cerevisiae.
    Yamamoto N; Maeda Y; Ikeda A; Sakurai H
    Eukaryot Cell; 2008 May; 7(5):783-90. PubMed ID: 18359875
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modulation of human heat shock factor trimerization by the linker domain.
    Liu PC; Thiele DJ
    J Biol Chem; 1999 Jun; 274(24):17219-25. PubMed ID: 10358080
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Skn7 response regulator of Saccharomyces cerevisiae interacts with Hsf1 in vivo and is required for the induction of heat shock genes by oxidative stress.
    Raitt DC; Johnson AL; Erkine AM; Makino K; Morgan B; Gross DS; Johnston LH
    Mol Biol Cell; 2000 Jul; 11(7):2335-47. PubMed ID: 10888672
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mediator recruitment to heat shock genes requires dual Hsf1 activation domains and mediator tail subunits Med15 and Med16.
    Kim S; Gross DS
    J Biol Chem; 2013 Apr; 288(17):12197-213. PubMed ID: 23447536
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rsp5 is required for the nuclear export of mRNA of HSF1 and MSN2/4 under stress conditions in Saccharomyces cerevisiae.
    Haitani Y; Takagi H
    Genes Cells; 2008 Feb; 13(2):105-16. PubMed ID: 18233954
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mutated yeast heat shock transcription factor activates transcription independently of hyperphosphorylation.
    Hashikawa N; Mizukami Y; Imazu H; Sakurai H
    J Biol Chem; 2006 Feb; 281(7):3936-42. PubMed ID: 16361698
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The natural osmolyte trehalose is a positive regulator of the heat-induced activity of yeast heat shock transcription factor.
    Conlin LK; Nelson HC
    Mol Cell Biol; 2007 Feb; 27(4):1505-15. PubMed ID: 17145780
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.