These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Skeletal muscle atrophy during short-term disuse: implications for age-related sarcopenia. Wall BT; Dirks ML; van Loon LJ Ageing Res Rev; 2013 Sep; 12(4):898-906. PubMed ID: 23948422 [TBL] [Abstract][Full Text] [Related]
3. Nutritional Strategies to Offset Disuse-Induced Skeletal Muscle Atrophy and Anabolic Resistance in Older Adults: From Whole-Foods to Isolated Ingredients. Marshall RN; Smeuninx B; Morgan PT; Breen L Nutrients; 2020 May; 12(5):. PubMed ID: 32466126 [TBL] [Abstract][Full Text] [Related]
4. Nutritional strategies to counteract muscle atrophy caused by disuse and to improve recovery. Magne H; Savary-Auzeloux I; Rémond D; Dardevet D Nutr Res Rev; 2013 Dec; 26(2):149-65. PubMed ID: 23930668 [TBL] [Abstract][Full Text] [Related]
5. Interventional strategies to combat muscle disuse atrophy in humans: focus on neuromuscular electrical stimulation and dietary protein. Dirks ML; Wall BT; van Loon LJC J Appl Physiol (1985); 2018 Sep; 125(3):850-861. PubMed ID: 28970205 [TBL] [Abstract][Full Text] [Related]
6. Disuse impairs the muscle protein synthetic response to protein ingestion in healthy men. Wall BT; Snijders T; Senden JM; Ottenbros CL; Gijsen AP; Verdijk LB; van Loon LJ J Clin Endocrinol Metab; 2013 Dec; 98(12):4872-81. PubMed ID: 24108315 [TBL] [Abstract][Full Text] [Related]
7. Skeletal muscle immobilisation-induced atrophy: mechanistic insights from human studies. Deane CS; Piasecki M; Atherton PJ Clin Sci (Lond); 2024 Jun; 138(12):741-756. PubMed ID: 38895777 [TBL] [Abstract][Full Text] [Related]
8. Disuse atrophy of human skeletal muscle: cell signaling and potential interventions. Urso ML Med Sci Sports Exerc; 2009 Oct; 41(10):1860-8. PubMed ID: 19727028 [TBL] [Abstract][Full Text] [Related]
9. Control of skeletal muscle atrophy in response to disuse: clinical/preclinical contentions and fallacies of evidence. Atherton PJ; Greenhaff PL; Phillips SM; Bodine SC; Adams CM; Lang CH Am J Physiol Endocrinol Metab; 2016 Sep; 311(3):E594-604. PubMed ID: 27382036 [TBL] [Abstract][Full Text] [Related]
10. Oxidative stress and disuse muscle atrophy: cause or consequence? Powers SK; Smuder AJ; Judge AR Curr Opin Clin Nutr Metab Care; 2012 May; 15(3):240-5. PubMed ID: 22466926 [TBL] [Abstract][Full Text] [Related]
11. Dietary proteins and amino acids in the control of the muscle mass during immobilization and aging: role of the MPS response. Cholewa JM; Dardevet D; Lima-Soares F; de Araújo Pessôa K; Oliveira PH; Dos Santos Pinho JR; Nicastro H; Xia Z; Cabido CE; Zanchi NE Amino Acids; 2017 May; 49(5):811-820. PubMed ID: 28175999 [TBL] [Abstract][Full Text] [Related]
12. Skeletal Muscle Disuse Atrophy and the Rehabilitative Role of Protein in Recovery from Musculoskeletal Injury. Howard EE; Pasiakos SM; Fussell MA; Rodriguez NR Adv Nutr; 2020 Jul; 11(4):989-1001. PubMed ID: 32167129 [TBL] [Abstract][Full Text] [Related]
13. Skeletal Muscle Recovery from Disuse Atrophy: Protein Turnover Signaling and Strategies for Accelerating Muscle Regrowth. Mirzoev TM Int J Mol Sci; 2020 Oct; 21(21):. PubMed ID: 33114683 [TBL] [Abstract][Full Text] [Related]
14. Facts, noise and wishful thinking: muscle protein turnover in aging and human disuse atrophy. Rennie MJ; Selby A; Atherton P; Smith K; Kumar V; Glover EL; Philips SM Scand J Med Sci Sports; 2010 Feb; 20(1):5-9. PubMed ID: 19558380 [TBL] [Abstract][Full Text] [Related]
15. Disuse-induced skeletal muscle atrophy in disease and nondisease states in humans: mechanisms, prevention, and recovery strategies. Nunes EA; Stokes T; McKendry J; Currier BS; Phillips SM Am J Physiol Cell Physiol; 2022 Jun; 322(6):C1068-C1084. PubMed ID: 35476500 [TBL] [Abstract][Full Text] [Related]
16. Protein catabolism and requirements in severe illness. Genton L; Pichard C Int J Vitam Nutr Res; 2011 Mar; 81(2-3):143-52. PubMed ID: 22139565 [TBL] [Abstract][Full Text] [Related]
17. Short-term muscle disuse lowers myofibrillar protein synthesis rates and induces anabolic resistance to protein ingestion. Wall BT; Dirks ML; Snijders T; van Dijk JW; Fritsch M; Verdijk LB; van Loon LJ Am J Physiol Endocrinol Metab; 2016 Jan; 310(2):E137-47. PubMed ID: 26578714 [TBL] [Abstract][Full Text] [Related]