These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 23550978)

  • 1. Photoinactivation of bacteria attached to glass and acrylic surfaces by 405 nm light: potential application for biofilm decontamination.
    McKenzie K; Maclean M; Timoshkin IV; Endarko E; MacGregor SJ; Anderson JG
    Photochem Photobiol; 2013; 89(4):927-35. PubMed ID: 23550978
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Disinfection of Pseudomonas aeruginosa biofilm contaminated tube lumens with ultraviolet C light emitting diodes.
    Bak J; Ladefoged SD; Tvede M; Begovic T; Gregersen A
    Biofouling; 2010 Jan; 26(1):31-8. PubMed ID: 20390554
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Use of titanium dioxide (TiO2) photocatalysts as alternative means for Listeria monocytogenes biofilm disinfection in food processing.
    Chorianopoulos NG; Tsoukleris DS; Panagou EZ; Falaras P; Nychas GJ
    Food Microbiol; 2011 Feb; 28(1):164-70. PubMed ID: 21056789
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced inactivation of Escherichia coli and Listeria monocytogenes by exposure to 405 nm light under sub-lethal temperature, salt and acid stress conditions.
    McKenzie K; Maclean M; Timoshkin IV; MacGregor SJ; Anderson JG
    Int J Food Microbiol; 2014 Jan; 170():91-8. PubMed ID: 24291187
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pulsed light for the inactivation of fungal biofilms of clinically important pathogenic Candida species.
    Garvey M; Andrade Fernandes JP; Rowan N
    Yeast; 2015 Jul; 32(7):533-40. PubMed ID: 25988542
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Violet-Blue Light Arrays at 405 Nanometers Exert Enhanced Antimicrobial Activity for Photodisinfection of Monomicrobial Nosocomial Biofilms.
    Halstead FD; Hadis MA; Marley N; Brock K; Milward MR; Cooper PR; Oppenheim B; Palin WM
    Appl Environ Microbiol; 2019 Nov; 85(21):. PubMed ID: 31444205
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Antimicrobial Blue Light Inactivation of Microbial Isolates in Biofilms.
    Ferrer-Espada R; Wang Y; Goh XS; Dai T
    Lasers Surg Med; 2020 Jun; 52(5):472-478. PubMed ID: 31536154
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A new dry-surface biofilm model: An essential tool for efficacy testing of hospital surface decontamination procedures.
    Almatroudi A; Hu H; Deva A; Gosbell IB; Jacombs A; Jensen SO; Whiteley G; Glasbey T; Vickery K
    J Microbiol Methods; 2015 Oct; 117():171-6. PubMed ID: 26260119
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Antimicrobial Blue Light Inactivation of Polymicrobial Biofilms.
    Ferrer-Espada R; Liu X; Goh XS; Dai T
    Front Microbiol; 2019; 10():721. PubMed ID: 31024499
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biofilms on environmental surfaces: evaluation of the disinfection efficacy of a novel steam vapor system.
    Song L; Wu J; Xi C
    Am J Infect Control; 2012 Dec; 40(10):926-30. PubMed ID: 22418602
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inactivation of Escherichia coli, Listeria monocytogenes, Pseudomonas aeruginosa and Staphylococcus aureus on stainless steel and glass surfaces by neutral electrolysed water.
    Deza MA; Araujo M; Garrido MJ
    Lett Appl Microbiol; 2005; 40(5):341-6. PubMed ID: 15836736
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bioactive Glass Granules Inhibit Mature Bacterial Biofilms on the Surfaces of Cochlear Implants.
    Höing B; Kirchhoff L; Arnolds J; Hussain T; Buer J; Lang S; Arweiler-Harbeck D; Steinmann J
    Otol Neurotol; 2018 Dec; 39(10):e985-e991. PubMed ID: 30334871
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Antimicrobial Blue Light Inactivation of Gram-Negative Pathogens in Biofilms: In Vitro and In Vivo Studies.
    Wang Y; Wu X; Chen J; Amin R; Lu M; Bhayana B; Zhao J; Murray CK; Hamblin MR; Hooper DC; Dai T
    J Infect Dis; 2016 May; 213(9):1380-7. PubMed ID: 26908743
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Potential applications of nonthermal plasmas against biofilm-associated micro-organisms in vitro.
    Puligundla P; Mok C
    J Appl Microbiol; 2017 May; 122(5):1134-1148. PubMed ID: 28106311
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Decontamination Efficacy of Ultraviolet Radiation against Biofilms of Common Nosocomial Bacteria.
    Tingpej P; Tiengtip R; Kondo S
    J Med Assoc Thai; 2015 Jun; 98(6):582-8. PubMed ID: 26219163
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The activity of ferulic and gallic acids in biofilm prevention and control of pathogenic bacteria.
    Borges A; Saavedra MJ; Simões M
    Biofouling; 2012; 28(7):755-67. PubMed ID: 22823343
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mucin-Pseudomonas aeruginosa interactions promote biofilm formation and antibiotic resistance.
    Landry RM; An D; Hupp JT; Singh PK; Parsek MR
    Mol Microbiol; 2006 Jan; 59(1):142-51. PubMed ID: 16359324
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Escherichia coli serotype O157:H7 retention on solid surfaces and peroxide resistance is enhanced by dual-strain biofilm formation.
    Uhlich GA; Rogers DP; Mosier DA
    Foodborne Pathog Dis; 2010 Aug; 7(8):935-43. PubMed ID: 20367070
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of blue light on Streptococcus mutans re-organization in biofilm.
    Chebath-Taub D; Steinberg D; Featherstone JD; Feuerstein O
    J Photochem Photobiol B; 2012 Nov; 116():75-8. PubMed ID: 22982208
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vitro laser ablation of laboratory developed biofilms using an Nd:YAG laser of 532 nm wavelength.
    Nandakumar K; Obika H; Utsumi A; Ooie T; Yano T
    Biotechnol Bioeng; 2004 Jun; 86(7):729-36. PubMed ID: 15162448
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.