These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 23551032)

  • 1. Squish and CuAAC: additive-free covalent monolayers of discrete molecules in seconds.
    Pellow MA; Stack TD; Chidsey CE
    Langmuir; 2013 May; 29(18):5383-7. PubMed ID: 23551032
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Copper-catalyzed azide-alkyne cycloaddition (CuAAC) and beyond: new reactivity of copper(I) acetylides.
    Hein JE; Fokin VV
    Chem Soc Rev; 2010 Apr; 39(4):1302-15. PubMed ID: 20309487
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental investigation on the mechanism of chelation-assisted, copper(II) acetate-accelerated azide-alkyne cycloaddition.
    Kuang GC; Guha PM; Brotherton WS; Simmons JT; Stankee LA; Nguyen BT; Clark RJ; Zhu L
    J Am Chem Soc; 2011 Sep; 133(35):13984-4001. PubMed ID: 21809811
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrochemically protected copper(I)-catalyzed azide-alkyne cycloaddition.
    Hong V; Udit AK; Evans RA; Finn MG
    Chembiochem; 2008 Jun; 9(9):1481-6. PubMed ID: 18504727
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Highly-efficient and versatile fluorous-tagged Cu(I)-catalyzed azide-alkyne cycloaddition ligand for preparing bioconjugates.
    Sun L; Gai Y; Anderson CJ; Zeng D
    Chem Commun (Camb); 2015 Dec; 51(96):17072-5. PubMed ID: 26426419
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tailored ligand acceleration of the Cu-catalyzed azide-alkyne cycloaddition reaction: practical and mechanistic implications.
    Presolski SI; Hong V; Cho SH; Finn MG
    J Am Chem Soc; 2010 Oct; 132(41):14570-6. PubMed ID: 20863116
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On-Resin Ugi Reaction for C-Terminally Modified and Head-to-Tail Cyclized Antibacterial Peptides.
    So WH; Bao Y; Chen X; Xia J
    Org Lett; 2021 Nov; 23(21):8277-8281. PubMed ID: 34623168
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Site-specific bioconjugation of a murine dihydrofolate reductase enzyme by copper(I)-catalyzed azide-alkyne cycloaddition with retained activity.
    Lim SI; Mizuta Y; Takasu A; Kim YH; Kwon I
    PLoS One; 2014; 9(6):e98403. PubMed ID: 24887377
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis and optimization of copper-catalyzed azide-alkyne cycloaddition for bioconjugation.
    Hong V; Presolski SI; Ma C; Finn MG
    Angew Chem Int Ed Engl; 2009; 48(52):9879-83. PubMed ID: 19943299
    [No Abstract]   [Full Text] [Related]  

  • 10. Double Nitroxide Labeling by Copper-Catalyzed Azide-Alkyne Cycloadditions with Noncanonical Amino Acids for Electron Paramagnetic Resonance Spectroscopy.
    Widder P; Berner F; Summerer D; Drescher M
    ACS Chem Biol; 2019 May; 14(5):839-844. PubMed ID: 30998314
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stepwise, Protecting Group Free Synthesis of [4]Rotaxanes.
    Lewis JE; Winn J; Goldup SM
    Molecules; 2017 Jan; 22(1):. PubMed ID: 28075366
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Peptide cyclization and cyclodimerization by Cu(I)-mediated azide-alkyne cycloaddition.
    Jagasia R; Holub JM; Bollinger M; Kirshenbaum K; Finn MG
    J Org Chem; 2009 Apr; 74(8):2964-74. PubMed ID: 19309103
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MOFs Modulate Copper Trafficking in Tumor Cells for Bioorthogonal Therapy.
    Wei Y; Zhao H; Liu Z; Yang J; Ren J; Qu X
    Nano Lett; 2024 Jan; 24(4):1341-1350. PubMed ID: 38252869
    [No Abstract]   [Full Text] [Related]  

  • 14. A CuSO
    Wang Y; Lu SC; Wen H; Zhao C; Jiang Y; Cui H
    Bioorg Chem; 2024 Sep; 150():107557. PubMed ID: 38878754
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photochemical cleavage of leader peptides.
    Bindman N; Merkx R; Koehler R; Herrman N; van der Donk WA
    Chem Commun (Camb); 2010 Dec; 46(47):8935-7. PubMed ID: 21046030
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biofunctionalization on alkylated silicon substrate surfaces via "click" chemistry.
    Qin G; Santos C; Zhang W; Li Y; Kumar A; Erasquin UJ; Liu K; Muradov P; Trautner BW; Cai C
    J Am Chem Soc; 2010 Nov; 132(46):16432-41. PubMed ID: 21033708
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Iodoetherification as a strategy towards sp
    Barnes L; Birkinshaw TN; Senior AJ; Brügge OS; Lewis W; Argent SP; Moody CJ; Nortcliffe A
    Bioorg Med Chem; 2024 Mar; 101():117636. PubMed ID: 38354458
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Guiding plant virus particles to integrin-displaying cells.
    Hovlid ML; Steinmetz NF; Laufer B; Lau JL; Kuzelka J; Wang Q; Hyypiä T; Nemerow GR; Kessler H; Manchester M; Finn MG
    Nanoscale; 2012 Jun; 4(12):3698-705. PubMed ID: 22585108
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of network structures on the tensile toughness of copper-catalyzed azide-alkyne cycloaddition (CuAAC)-based photopolymers.
    Song HB; Sowan N; Baranek A; Sinha J; Cook WD; Bowman CN
    Macromolecules; 2021 Jan; 54(2):747-756. PubMed ID: 33888918
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Copper and Silver Catalysis in the (3 + 2) Cycloaddition of Neutral Three-Atom Components with Terminal Alkynes.
    Campeau D; Pommainville A; Gorodnichy M; Gagosz F
    J Am Chem Soc; 2023 Aug; 145(34):19018-19029. PubMed ID: 37582344
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.