These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
437 related articles for article (PubMed ID: 23551107)
1. Self-assembled Fe₂O₃/graphene aerogel with high lithium storage performance. Xiao L; Wu D; Han S; Huang Y; Li S; He M; Zhang F; Feng X ACS Appl Mater Interfaces; 2013 May; 5(9):3764-9. PubMed ID: 23551107 [TBL] [Abstract][Full Text] [Related]
2. 3D graphene supported MoO2 for high performance binder-free lithium ion battery. Huang ZX; Wang Y; Zhu YG; Shi Y; Wong JI; Yang HY Nanoscale; 2014 Aug; 6(16):9839-45. PubMed ID: 25028917 [TBL] [Abstract][Full Text] [Related]
3. Facile ultrasonic synthesis of CoO quantum dot/graphene nanosheet composites with high lithium storage capacity. Peng C; Chen B; Qin Y; Yang S; Li C; Zuo Y; Liu S; Yang J ACS Nano; 2012 Feb; 6(2):1074-81. PubMed ID: 22224549 [TBL] [Abstract][Full Text] [Related]
4. Facile Hydrothermal Synthesis of VS2/Graphene Nanocomposites with Superior High-Rate Capability as Lithium-Ion Battery Cathodes. Fang W; Zhao H; Xie Y; Fang J; Xu J; Chen Z ACS Appl Mater Interfaces; 2015 Jun; 7(23):13044-52. PubMed ID: 26016687 [TBL] [Abstract][Full Text] [Related]
5. Core-shell α-Fe₂O₃@α-MoO₃ nanorods as lithium-ion battery anodes with extremely high capacity and cyclability. Wang Q; Wang Q; Zhang DA; Sun J; Xing LL; Xue XY Chem Asian J; 2014 Nov; 9(11):3299-306. PubMed ID: 25169204 [TBL] [Abstract][Full Text] [Related]
6. High-performance mesoporous γ-Fe Liu YL; Yan C; Wang GG; Li F; Huang-Fu JS; Wu BW; Zhang HY; Han JC Nanotechnology; 2020 Apr; 31(26):265405. PubMed ID: 32191937 [TBL] [Abstract][Full Text] [Related]
7. Seaweed-Derived Route to Fe2O3 Hollow Nanoparticles/N-Doped Graphene Aerogels with High Lithium Ion Storage Performance. Liu L; Yang X; Lv C; Zhu A; Zhu X; Guo S; Chen C; Yang D ACS Appl Mater Interfaces; 2016 Mar; 8(11):7047-53. PubMed ID: 26943285 [TBL] [Abstract][Full Text] [Related]
8. CoMoO4 nanoparticles anchored on reduced graphene oxide nanocomposites as anodes for long-life lithium-ion batteries. Yao J; Gong Y; Yang S; Xiao P; Zhang Y; Keyshar K; Ye G; Ozden S; Vajtai R; Ajayan PM ACS Appl Mater Interfaces; 2014 Nov; 6(22):20414-22. PubMed ID: 25380030 [TBL] [Abstract][Full Text] [Related]
9. Three-Dimensional Porous Cobalt Phosphide Nanocubes Encapsulated in a Graphene Aerogel as an Advanced Anode with High Coulombic Efficiency for High-Energy Lithium-Ion Batteries. Gao H; Yang F; Zheng Y; Zhang Q; Hao J; Zhang S; Zheng H; Chen J; Liu H; Guo Z ACS Appl Mater Interfaces; 2019 Feb; 11(5):5373-5379. PubMed ID: 30632744 [TBL] [Abstract][Full Text] [Related]
10. A three-dimensional hierarchical Fe2O3@NiO core/shell nanorod array on carbon cloth: a new class of anode for high-performance lithium-ion batteries. Xiong QQ; Tu JP; Xia XH; Zhao XY; Gu CD; Wang XL Nanoscale; 2013 Sep; 5(17):7906-12. PubMed ID: 23851378 [TBL] [Abstract][Full Text] [Related]
11. In Situ Integration of Anisotropic SnO₂ Heterostructures inside Three-Dimensional Graphene Aerogel for Enhanced Lithium Storage. Yao X; Guo G; Ma X; Zhao Y; Ang CY; Luo Z; Nguyen KT; Li PZ; Yan Q; Zhao Y ACS Appl Mater Interfaces; 2015 Dec; 7(47):26085-93. PubMed ID: 26554275 [TBL] [Abstract][Full Text] [Related]
12. Enhanced electrode performance of Fe2O3 nanoparticle-decorated nanomesh graphene as anodes for lithium-ion batteries. Zhu X; Song X; Ma X; Ning G ACS Appl Mater Interfaces; 2014 May; 6(10):7189-97. PubMed ID: 24786919 [TBL] [Abstract][Full Text] [Related]
13. Exfoliated-SnS₂ restacked on graphene as a high-capacity, high-rate, and long-cycle life anode for sodium ion batteries. Liu Y; Kang H; Jiao L; Chen C; Cao K; Wang Y; Yuan H Nanoscale; 2015 Jan; 7(4):1325-32. PubMed ID: 25367597 [TBL] [Abstract][Full Text] [Related]
14. Porous Fe Jiang T; Bu F; Feng X; Shakir I; Hao G; Xu Y ACS Nano; 2017 May; 11(5):5140-5147. PubMed ID: 28457124 [TBL] [Abstract][Full Text] [Related]
15. General Strategy for Fabricating Sandwich-like Graphene-Based Hybrid Films for Highly Reversible Lithium Storage. Zhong X; Yang Z; Liu X; Wang J; Gu L; Yu Y ACS Appl Mater Interfaces; 2015 Aug; 7(33):18320-6. PubMed ID: 26259036 [TBL] [Abstract][Full Text] [Related]
16. Three-dimensional MoS2 hierarchical nanoarchitectures anchored into a carbon layer as graphene analogues with improved lithium ion storage performance. Zhao X; Hu C; Cao M Chem Asian J; 2013 Nov; 8(11):2701-7. PubMed ID: 23946108 [TBL] [Abstract][Full Text] [Related]
17. CuGeO₃ nanowires covered with graphene as anode materials of lithium ion batteries with enhanced reversible capacity and cyclic performance. Wu S; Wang R; Wang Z; Lin Z Nanoscale; 2014 Jul; 6(14):8350-8. PubMed ID: 24934278 [TBL] [Abstract][Full Text] [Related]
18. An alumina stabilized ZnO-graphene anode for lithium ion batteries via atomic layer deposition. Yu M; Wang A; Wang Y; Li C; Shi G Nanoscale; 2014 Oct; 6(19):11419-24. PubMed ID: 25148141 [TBL] [Abstract][Full Text] [Related]
19. Facile synthesis of metal oxide/reduced graphene oxide hybrids with high lithium storage capacity and stable cyclability. Zhu J; Zhu T; Zhou X; Zhang Y; Lou XW; Chen X; Zhang H; Hng HH; Yan Q Nanoscale; 2011 Mar; 3(3):1084-9. PubMed ID: 21180729 [TBL] [Abstract][Full Text] [Related]
20. 3D free-standing nitrogen-doped reduced graphene oxide aerogel as anode material for sodium ion batteries with enhanced sodium storage. Zhang J; Li C; Peng Z; Liu Y; Zhang J; Liu Z; Li D Sci Rep; 2017 Jul; 7(1):4886. PubMed ID: 28687731 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]