BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 23551340)

  • 1. Visualizing metabolite distribution and enzymatic conversion in plant tissues by desorption electrospray ionization mass spectrometry imaging.
    Li B; Knudsen C; Hansen NK; Jørgensen K; Kannangara R; Bak S; Takos A; Rook F; Hansen SH; Møller BL; Janfelt C; Bjarnholt N
    Plant J; 2013 Jun; 74(6):1059-71. PubMed ID: 23551340
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genomic clustering of cyanogenic glucoside biosynthetic genes aids their identification in Lotus japonicus and suggests the repeated evolution of this chemical defence pathway.
    Takos AM; Knudsen C; Lai D; Kannangara R; Mikkelsen L; Motawia MS; Olsen CE; Sato S; Tabata S; Jørgensen K; Møller BL; Rook F
    Plant J; 2011 Oct; 68(2):273-86. PubMed ID: 21707799
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The beta-glucosidases responsible for bioactivation of hydroxynitrile glucosides in Lotus japonicus.
    Morant AV; Bjarnholt N; Kragh ME; Kjaergaard CH; Jørgensen K; Paquette SM; Piotrowski M; Imberty A; Olsen CE; Møller BL; Bak S
    Plant Physiol; 2008 Jul; 147(3):1072-91. PubMed ID: 18467457
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of barley leaf tissue using direct and indirect desorption electrospray ionization imaging mass spectrometry.
    Li B; Bjarnholt N; Hansen SH; Janfelt C
    J Mass Spectrom; 2011 Dec; 46(12):1241-6. PubMed ID: 22223414
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biosynthesis of the nitrile glucosides rhodiocyanoside A and D and the cyanogenic glucosides lotaustralin and linamarin in Lotus japonicus.
    Forslund K; Morant M; Jørgensen B; Olsen CE; Asamizu E; Sato S; Tabata S; Bak S
    Plant Physiol; 2004 May; 135(1):71-84. PubMed ID: 15122013
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Diversification of an ancient theme: hydroxynitrile glucosides.
    Bjarnholt N; Rook F; Motawia MS; Cornett C; Jørgensen C; Olsen CE; Jaroszewski JW; Bak S; Møller BL
    Phytochemistry; 2008 May; 69(7):1507-16. PubMed ID: 18342345
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cassava plants with a depleted cyanogenic glucoside content in leaves and tubers. Distribution of cyanogenic glucosides, their site of synthesis and transport, and blockage of the biosynthesis by RNA interference technology.
    Jørgensen K; Bak S; Busk PK; Sørensen C; Olsen CE; Puonti-Kaerlas J; Møller BL
    Plant Physiol; 2005 Sep; 139(1):363-74. PubMed ID: 16126856
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biosynthesis of the cyanogenic glucosides linamarin and lotaustralin in cassava: isolation, biochemical characterization, and expression pattern of CYP71E7, the oxime-metabolizing cytochrome P450 enzyme.
    Jørgensen K; Morant AV; Morant M; Jensen NB; Olsen CE; Kannangara R; Motawia MS; Møller BL; Bak S
    Plant Physiol; 2011 Jan; 155(1):282-92. PubMed ID: 21045121
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mass Spectrometry Based Imaging of Labile Glucosides in Plants.
    Bøgeskov Schmidt F; Heskes AM; Thinagaran D; Lindberg Møller B; Jørgensen K; Boughton BA
    Front Plant Sci; 2018; 9():892. PubMed ID: 30002667
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Drying and processing protocols affect the quantification of cyanogenic glucosides in forage sorghum.
    Gleadow RM; Møldrup ME; O'Donnell NH; Stuart PN
    J Sci Food Agric; 2012 Aug; 92(11):2234-8. PubMed ID: 22700371
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genetic screening identifies cyanogenesis-deficient mutants of Lotus japonicus and reveals enzymatic specificity in hydroxynitrile glucoside metabolism.
    Takos A; Lai D; Mikkelsen L; Abou Hachem M; Shelton D; Motawia MS; Olsen CE; Wang TL; Martin C; Rook F
    Plant Cell; 2010 May; 22(5):1605-19. PubMed ID: 20453117
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lotus japonicus flowers are defended by a cyanogenic β-glucosidase with highly restricted expression to essential reproductive organs.
    Lai D; Pičmanová M; Abou Hachem M; Motawia MS; Olsen CE; Møller BL; Rook F; Takos AM
    Plant Mol Biol; 2015 Sep; 89(1-2):21-34. PubMed ID: 26249044
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reconfigured Cyanogenic Glucoside Biosynthesis in
    Hansen CC; Sørensen M; Veiga TAM; Zibrandtsen JFS; Heskes AM; Olsen CE; Boughton BA; Møller BL; Neilson EHJ
    Plant Physiol; 2018 Nov; 178(3):1081-1095. PubMed ID: 30297456
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Leucine-derived cyano glucosides in barley.
    Nielsen KA; Olsen CE; Pontoppidan K; Møller BL
    Plant Physiol; 2002 Jul; 129(3):1066-75. PubMed ID: 12114561
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineering cyanogen synthesis and turnover in cassava (Manihot esculenta).
    Siritunga D; Sayre R
    Plant Mol Biol; 2004 Nov; 56(4):661-9. PubMed ID: 15630626
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Spatial Distribution of Alkaloids in Psychotria prunifolia (Kunth) Steyerm and Palicourea coriacea (Cham.) K. Schum Leaves Analysed by Desorption Electrospray Ionisation Mass Spectrometry Imaging.
    Kato L; Moraes AP; de Oliveira CMA; Vaz BG; de Almeida Gonçalves L; E Silva EC; Janfelt C
    Phytochem Anal; 2018 Jan; 29(1):69-76. PubMed ID: 28877378
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization and expression profile of two UDP-glucosyltransferases, UGT85K4 and UGT85K5, catalyzing the last step in cyanogenic glucoside biosynthesis in cassava.
    Kannangara R; Motawia MS; Hansen NK; Paquette SM; Olsen CE; Møller BL; Jørgensen K
    Plant J; 2011 Oct; 68(2):287-301. PubMed ID: 21736650
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The cyanogenic glucoside composition of Zygaena filipendulae (Lepidoptera: Zygaenidae) as effected by feeding on wild-type and transgenic lotus populations with variable cyanogenic glucoside profiles.
    Zagrobelny M; Bak S; Ekstrøm CT; Olsen CE; Møller BL
    Insect Biochem Mol Biol; 2007 Jan; 37(1):10-8. PubMed ID: 17175442
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Understanding the molecular signatures in leaves and flowers by desorption electrospray ionization mass spectrometry (DESI MS) imaging.
    Hemalatha RG; Pradeep T
    J Agric Food Chem; 2013 Aug; 61(31):7477-87. PubMed ID: 23848451
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterisation of galloylated cyanogenic glucosides and hydrolysable tannins from leaves of Phyllagathis rotundifolia by LC-ESI-MS/MS.
    Hooi Poay T; Sui Kiong L; Cheng Hock C
    Phytochem Anal; 2011; 22(6):516-25. PubMed ID: 21495106
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.