These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
171 related articles for article (PubMed ID: 23551848)
1. Comparison of time series models for predicting campylobacteriosis risk in New Zealand. Al-Sakkaf A; Jones G Zoonoses Public Health; 2014 May; 61(3):167-74. PubMed ID: 23551848 [TBL] [Abstract][Full Text] [Related]
2. The spatial and temporal determinants of campylobacteriosis notifications in New Zealand, 2001-2007. Spencer SE; Marshall J; Pirie R; Campbell D; Baker MG; French NP Epidemiol Infect; 2012 Sep; 140(9):1663-77. PubMed ID: 22050713 [TBL] [Abstract][Full Text] [Related]
3. Is the major increase in notified campylobacteriosis in New Zealand real? Baker MG; Sneyd E; Wilson NA Epidemiol Infect; 2007 Jan; 135(1):163-70. PubMed ID: 16753076 [TBL] [Abstract][Full Text] [Related]
4. Time series prediction of under-five mortality rates for Nigeria: comparative analysis of artificial neural networks, Holt-Winters exponential smoothing and autoregressive integrated moving average models. Adeyinka DA; Muhajarine N BMC Med Res Methodol; 2020 Dec; 20(1):292. PubMed ID: 33267817 [TBL] [Abstract][Full Text] [Related]
5. Filling gaps in notification data: a model-based approach applied to travel related campylobacteriosis cases in New Zealand. Amene E; Horn B; Pirie R; Lake R; Döpfer D BMC Infect Dis; 2016 Sep; 16(1):475. PubMed ID: 27600394 [TBL] [Abstract][Full Text] [Related]
6. Flies, fingers, fomites, and food. Campylobacteriosis in New Zealand--food-associated rather than food-borne. Nelson W; Harris B N Z Med J; 2006 Aug; 119(1240):U2128. PubMed ID: 16924279 [TBL] [Abstract][Full Text] [Related]
7. Seasonality of Campylobacter jejuni isolates associated with human campylobacteriosis in the Manawatu region, New Zealand. Friedrich A; Marshall JC; Biggs PJ; Midwinter AC; French NP Epidemiol Infect; 2016 Mar; 144(4):820-8. PubMed ID: 26344515 [TBL] [Abstract][Full Text] [Related]
8. Molecular-based surveillance of campylobacteriosis in New Zealand--from source attribution to genomic epidemiology. Muellner P; Pleydell E; Pirie R; Baker MG; Campbell D; Carter PE; French NP Euro Surveill; 2013 Jan; 18(3):. PubMed ID: 23351655 [TBL] [Abstract][Full Text] [Related]
9. Assigning the source of human campylobacteriosis in New Zealand: a comparative genetic and epidemiological approach. Mullner P; Spencer SE; Wilson DJ; Jones G; Noble AD; Midwinter AC; Collins-Emerson JM; Carter P; Hathaway S; French NP Infect Genet Evol; 2009 Dec; 9(6):1311-9. PubMed ID: 19778636 [TBL] [Abstract][Full Text] [Related]
10. Comparison of three time-series models for predicting campylobacteriosis risk. Weisent J; Seaver W; Odoi A; Rohrbach B Epidemiol Infect; 2010 Jun; 138(6):898-906. PubMed ID: 20092672 [TBL] [Abstract][Full Text] [Related]
11. Prediction of acute onset of chronic cor pulmonale: comparative analysis of Holt-Winters exponential smoothing and ARIMA model. Wang N; Zhuang W; Ran Z; Wan P; Fu J BMC Med Res Methodol; 2024 Sep; 24(1):204. PubMed ID: 39271998 [TBL] [Abstract][Full Text] [Related]
12. Campylobacteriosis rates show age-related static bimodal and seasonality trends. Nelson W; Harris B N Z Med J; 2011 Jun; 124(1337):33-9. PubMed ID: 21946876 [TBL] [Abstract][Full Text] [Related]
13. The detection of spatially localised outbreaks in campylobacteriosis notification data. Spencer SE; Marshall J; Pirie R; Campbell D; French NP Spat Spatiotemporal Epidemiol; 2011 Sep; 2(3):173-83. PubMed ID: 22748176 [TBL] [Abstract][Full Text] [Related]
14. The importance of climatic factors and outliers in predicting regional monthly campylobacteriosis risk in Georgia, USA. Weisent J; Seaver W; Odoi A; Rohrbach B Int J Biometeorol; 2014 Nov; 58(9):1865-78. PubMed ID: 24458769 [TBL] [Abstract][Full Text] [Related]
15. The regionality of campylobacteriosis seasonality in New Zealand. Hearnden M; Skelly C; Eyles R; Weinstein P Int J Environ Health Res; 2003 Dec; 13(4):337-48. PubMed ID: 14594700 [TBL] [Abstract][Full Text] [Related]
16. Marked campylobacteriosis decline after interventions aimed at poultry, New Zealand. Sears A; Baker MG; Wilson N; Marshall J; Muellner P; Campbell DM; Lake RJ; French NP Emerg Infect Dis; 2011 Jun; 17(6):1007-15. PubMed ID: 21749761 [TBL] [Abstract][Full Text] [Related]
17. New Zealand Food Safety Authority's response to the 'flies, fingers, fomites, and food' article on campylobacteriosis. Campbell D; Hathaway S; van der Logt P N Z Med J; 2006 Sep; 119(1241):U2157. PubMed ID: 16964304 [No Abstract] [Full Text] [Related]
18. Trends in Campylobacter incidence in broilers and humans in six European countries, 1997-2007. Jore S; Viljugrein H; Brun E; Heier BT; Borck B; Ethelberg S; Hakkinen M; Kuusi M; Reiersen J; Hansson I; Engvall EO; Løfdahl M; Wagenaar JA; van Pelt W; Hofshagen M Prev Vet Med; 2010 Jan; 93(1):33-41. PubMed ID: 19837471 [TBL] [Abstract][Full Text] [Related]
19. The transmission of thermotolerant Campylobacter spp. to people living or working on dairy farms in New Zealand. Gilpin BJ; Scholes P; Robson B; Savill MG Zoonoses Public Health; 2008 Sep; 55(7):352-60. PubMed ID: 18667028 [TBL] [Abstract][Full Text] [Related]
20. Disease surveillance in rural communities is compromised by address geocoding uncertainty: a case study of campylobacteriosis. Skelly C; Black W; Hearnden M; Eyles R; Weinstein P Aust J Rural Health; 2002 Apr; 10(2):87-93. PubMed ID: 12047502 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]