BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 23552055)

  • 1. Influence of the layer thickness in plasmonic gold nanoparticles produced by thermal evaporation.
    Gaspar D; Pimentel AC; Mateus T; Leitão JP; Soares J; Falcão BP; Araújo A; Vicente A; Filonovich SA; Aguas H; Martins R; Ferreira I
    Sci Rep; 2013; 3():1469. PubMed ID: 23552055
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optical absorption engineering in stacked plasmonic Au-SiO₂-Pd nanoantennas.
    Wadell C; Antosiewicz TJ; Langhammer C
    Nano Lett; 2012 Sep; 12(9):4784-90. PubMed ID: 22916998
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of particle properties and light polarization on the plasmonic resonances in metallic nanoparticles.
    Guler U; Turan R
    Opt Express; 2010 Aug; 18(16):17322-38. PubMed ID: 20721120
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface plasmon-enhanced light-emission mechanism of Ag-coated ZnO/Al2O3 core/shell nanorod structures.
    Noh BY; Baek SH; Jung YI; Kim JH; Park IK
    J Nanosci Nanotechnol; 2013 May; 13(5):3335-40. PubMed ID: 23858854
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optical properties of silicon semiconductor-supported gold nanoparticles obtained by sputtering.
    Giangregorio MM; Bianco GV; Capezzuto P; Bruno G; Losurdo M; Suvorova AA; Saunders M
    J Nanosci Nanotechnol; 2012 Nov; 12(11):8594-9. PubMed ID: 23421249
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evolution of nonlinear optical properties: from gold atomic clusters to plasmonic nanocrystals.
    Philip R; Chantharasupawong P; Qian H; Jin R; Thomas J
    Nano Lett; 2012 Sep; 12(9):4661-7. PubMed ID: 22845756
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coherent multiphoton photoelectron emission from single au nanorods: the critical role of plasmonic electric near-field enhancement.
    Grubisic A; Schweikhard V; Baker TA; Nesbitt DJ
    ACS Nano; 2013 Jan; 7(1):87-99. PubMed ID: 23194174
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transient enhancement and spectral narrowing of the photothermal effect of plasmonic nanoparticles under pulsed excitation.
    Lukianova-Hleb EY; Volkov AN; Wu X; Lapotko DO
    Adv Mater; 2013 Feb; 25(5):772-6. PubMed ID: 23161793
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced broadband absorption in gold by plasmonic tapered coaxial holes.
    Mo L; Yang L; Nadzeyka A; Bauerdick S; He S
    Opt Express; 2014 Dec; 22(26):32233-44. PubMed ID: 25607189
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Shifting of surface plasmon resonance due to electromagnetic coupling between graphene and Au nanoparticles.
    Niu J; Shin YJ; Son J; Lee Y; Ahn JH; Yang H
    Opt Express; 2012 Aug; 20(18):19690-6. PubMed ID: 23037021
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Labeled gold nanoparticles immobilized at smooth metallic substrates: systematic investigation of surface plasmon resonance and surface-enhanced Raman scattering.
    Driskell JD; Lipert RJ; Porter MD
    J Phys Chem B; 2006 Sep; 110(35):17444-51. PubMed ID: 16942083
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plasmon-induced enhancement in analytical performance based on gold nanoparticles deposited on TiO2 film.
    Zhu A; Luo Y; Tian Y
    Anal Chem; 2009 Sep; 81(17):7243-7. PubMed ID: 19655788
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A sensitive plasmonic copper(II) sensor based on gold nanoparticles deposited on ITO glass substrate.
    Ding L; Gao Y; Di J
    Biosens Bioelectron; 2016 Sep; 83():9-14. PubMed ID: 27093484
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tunable Fano resonance in symmetric multilayered gold nanoshells.
    Peña-Rodríguez O; Rivera A; Campoy-Quiles M; Pal U
    Nanoscale; 2013 Jan; 5(1):209-16. PubMed ID: 23151994
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Local surface plasmon resonance of gold nanoparticles as a correlative light and electron microscopy (CLEM) tag for biological samples.
    Haruta T; Hasumi K; Ikeda Y; Konyuba Y; Fukuda T; Nishioka H
    Microscopy (Oxf); 2019 Dec; 68(6):467-470. PubMed ID: 31687748
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of nanoparticle size and cell type on high sensitivity cell detection using a localized surface plasmon resonance biosensor.
    Liu F; Wong MM; Chiu SK; Lin H; Ho JC; Pang SW
    Biosens Bioelectron; 2014 May; 55():141-8. PubMed ID: 24373953
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of higher order long-propagation-length surface plasmon polariton modes in chemically prepared gold nanowires.
    Paul A; Solis D; Bao K; Chang WS; Nauert S; Vidgerman L; Zubarev ER; Nordlander P; Link S
    ACS Nano; 2012 Sep; 6(9):8105-13. PubMed ID: 22900780
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Single gold trimers and 3D superstructures exhibit a polarization-independent SERS response.
    Steinigeweg D; Schütz M; Schlücker S
    Nanoscale; 2013 Jan; 5(1):110-3. PubMed ID: 23076725
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Demonstrating photoluminescence from Au is electronic inelastic light scattering of a plasmonic metal: the origin of SERS backgrounds.
    Hugall JT; Baumberg JJ
    Nano Lett; 2015 Apr; 15(4):2600-4. PubMed ID: 25734469
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sensitivity Enhancement of Transition Metal Dichalcogenides/Silicon Nanostructure-based Surface Plasmon Resonance Biosensor.
    Ouyang Q; Zeng S; Jiang L; Hong L; Xu G; Dinh XQ; Qian J; He S; Qu J; Coquet P; Yong KT
    Sci Rep; 2016 Jun; 6():28190. PubMed ID: 27305974
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.