These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 23552187)

  • 1. Direct and accurate patterning of plasmonic nanostructures with ultrasmall gaps.
    Si G; Zhao Y; Lv J; Wang F; Liu H; Teng J; Liu YJ
    Nanoscale; 2013 May; 5(10):4309-13. PubMed ID: 23552187
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct and reliable patterning of plasmonic nanostructures with sub-10-nm gaps.
    Duan H; Hu H; Kumar K; Shen Z; Yang JK
    ACS Nano; 2011 Sep; 5(9):7593-600. PubMed ID: 21846105
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rapid Focused Ion Beam Milling Based Fabrication of Plasmonic Nanoparticles and Assemblies via "Sketch and Peel" Strategy.
    Chen Y; Bi K; Wang Q; Zheng M; Liu Q; Han Y; Yang J; Chang S; Zhang G; Duan H
    ACS Nano; 2016 Dec; 10(12):11228-11236. PubMed ID: 28024375
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabrication and characterization of plasmonic nanocone antennas for strong spontaneous emission enhancement.
    Hoffmann B; Vassant S; Chen XW; Götzinger S; Sandoghdar V; Christiansen S
    Nanotechnology; 2015 Oct; 26(40):404001. PubMed ID: 26376922
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-Density 2D Homo- and Hetero- Plasmonic Dimers with Universal Sub-10-nm Gaps.
    Zhang M; Large N; Koh AL; Cao Y; Manjavacas A; Sinclair R; Nordlander P; Wang SX
    ACS Nano; 2015 Sep; 9(9):9331-9. PubMed ID: 26202803
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Helium focused ion beam fabricated plasmonic antennas with sub-5 nm gaps.
    Scholder O; Jefimovs K; Shorubalko I; Hafner C; Sennhauser U; Bona GL
    Nanotechnology; 2013 Oct; 24(39):395301. PubMed ID: 24013454
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultrafast direct fabrication of flexible substrate-supported designer plasmonic nanoarrays.
    Hu Y; Kumar P; Xu R; Zhao K; Cheng GJ
    Nanoscale; 2016 Jan; 8(1):172-82. PubMed ID: 26628390
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A centimeter-scale sub-10 nm gap plasmonic nanorod array film as a versatile platform for enhancing light-matter interactions.
    Zhou ZK; Xue J; Zheng Z; Li J; Ke Y; Yu Y; Han JB; Xie W; Deng S; Chen H; Wang X
    Nanoscale; 2015 Oct; 7(37):15392-403. PubMed ID: 26335388
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High displacement sensitivity in asymmetric plasmonic nanostructures.
    Tseng HC; Chang CW
    Opt Express; 2010 Aug; 18(17):18360-7. PubMed ID: 20721229
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication of nanodot plasmonic waveguide structures using FIB milling and electron beam-induced deposition.
    Dhawan A; Gerhold M; Madison A; Fowlkes J; Russell PE; Vo-Dinh T; Leonard DN
    Scanning; 2009; 31(4):139-46. PubMed ID: 19670460
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plasmonic-induced optical transparency in the near-infrared and visible range with double split nanoring cavity.
    Liu SD; Yang Z; Liu RP; Li XY
    Opt Express; 2011 Aug; 19(16):15363-70. PubMed ID: 21934898
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gap surface plasmon polaritons enhanced by a plasmonic lens.
    Chul Kim H; Cheng X
    Opt Lett; 2011 Aug; 36(16):3082-4. PubMed ID: 21847167
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Free-standing sub-10 nm nanostencils for the definition of gaps in plasmonic antennas.
    Duan H; Hu H; Hui HK; Shen Z; Yang JK
    Nanotechnology; 2013 May; 24(18):185301. PubMed ID: 23579281
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plasmonic Nanolenses Produced by Cylindrical Vector Beam Printing for Sensing Applications.
    Syubaev SA; Zhizhchenko AY; Pavlov DV; Gurbatov SO; Pustovalov EV; Porfirev AP; Khonina SN; Kulinich SA; Rayappan JBB; Kudryashov SI; Kuchmizhak AA
    Sci Rep; 2019 Dec; 9(1):19750. PubMed ID: 31874984
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High transmission from 2D periodic plasmonic finite arrays with sub-20 nm gaps realized with Ga focused ion beam milling.
    Pisano F; Balena A; Kashif MF; Pisanello M; de Marzo G; Algieri L; Qualtieri A; Sileo L; Stomeo T; D'Orazio A; De Vittorio M; Pisanello F; Grande M
    Nanotechnology; 2020 Jul; 31(43):435301. PubMed ID: 32659749
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tunable band-pass plasmonic waveguide filters with nanodisk resonators.
    Lu H; Liu X; Mao D; Wang L; Gong Y
    Opt Express; 2010 Aug; 18(17):17922-7. PubMed ID: 20721178
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Controlled Patterning of Plasmonic Dimers by Using an Ultrathin Nanoporous Alumina Membrane as a Shadow Mask.
    Hao Q; Huang H; Fan X; Yin Y; Wang J; Li W; Qiu T; Ma L; Chu PK; Schmidt OG
    ACS Appl Mater Interfaces; 2017 Oct; 9(41):36199-36205. PubMed ID: 28948758
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Infrared optical properties of nanoantenna dimers with photochemically narrowed gaps in the 5 nm regime.
    Neubrech F; Weber D; Katzmann J; Huck C; Toma A; Di Fabrizio E; Pucci A; Härtling T
    ACS Nano; 2012 Aug; 6(8):7326-32. PubMed ID: 22804706
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ion-beam assisted laser fabrication of sensing plasmonic nanostructures.
    Kuchmizhak A; Gurbatov S; Vitrik O; Kulchin Y; Milichko V; Makarov S; Kudryashov S
    Sci Rep; 2016 Jan; 6():19410. PubMed ID: 26776569
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative investigation of sensing behaviors between gap and lattice plasmon modes in a metallic nanoring array.
    Liang Y; Li L; Lu M; Yuan H; Long Z; Peng W; Xu T
    Nanoscale; 2018 Jan; 10(2):548-555. PubMed ID: 29185577
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.