These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 23552247)

  • 21. Evaluating Cryptosporidium and Giardia concentrations in combined sewer overflow.
    Arnone RD; Walling JP
    J Water Health; 2006 Jun; 4(2):157-65. PubMed ID: 16813009
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cluster analysis for characterization of rainfalls and CSO behaviours in an urban drainage area of Tokyo.
    Yu Y; Kojima K; An K; Furumai H
    Water Sci Technol; 2013; 68(3):544-51. PubMed ID: 23925181
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Do baseline assumptions alter the efficacy of green stormwater infrastructure to reduce combined sewer overflows?
    Rodriguez M; Cavadini GB; Cook LM
    Water Res; 2024 Apr; 253():121284. PubMed ID: 38367376
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Addressing the challenges of combined sewer overflows.
    Perry WB; Ahmadian R; Munday M; Jones O; Ormerod SJ; Durance I
    Environ Pollut; 2024 Feb; 343():123225. PubMed ID: 38151091
    [TBL] [Abstract][Full Text] [Related]  

  • 25. CSO management from an operator's perspective: a step-wise action plan.
    Dirckx G; Thoeye Ch; De Gueldre G; Van De Steene B
    Water Sci Technol; 2011; 63(5):1044-52. PubMed ID: 21411957
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Design of self-cleansing sanitary sewer systems with the use of flushing devices.
    Goormans T; Engelen D; Bouteligier R; Willems P; Berlamont J
    Water Sci Technol; 2009; 60(4):901-8. PubMed ID: 19700828
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Reducing pathogens in combined sewer overflows using performic acid.
    Tondera K; Klaer K; Koch C; Hamza IA; Pinnekamp J
    Int J Hyg Environ Health; 2016 Oct; 219(7 Pt B):700-708. PubMed ID: 27142128
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Continuous monitoring in sewer networks an approach for quantification of pollution loads from CSOs into surface water bodies.
    Gruber G; Winkler S; Pressl A
    Water Sci Technol; 2005; 52(12):215-23. PubMed ID: 16477989
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Using data from monitoring combined sewer overflows to assess, improve, and maintain combined sewer systems.
    Montserrat A; Bosch L; Kiser MA; Poch M; Corominas L
    Sci Total Environ; 2015 Feb; 505():1053-61. PubMed ID: 25461106
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Priority pollutants in urban stormwater: part 2 - case of combined sewers.
    Gasperi J; Zgheib S; Cladière M; Rocher V; Moilleron R; Chebbo G
    Water Res; 2012 Dec; 46(20):6693-703. PubMed ID: 22000716
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Exploring the structural factors of resilience in urban drainage systems: a large-scale stochastic computational experiment.
    Zhang D; Dong X; Zeng S
    Water Res; 2021 Jan; 188():116475. PubMed ID: 33039833
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Estimation of combined sewer overflow discharge: a software sensor approach based on local water level measurements.
    Ahm M; Thorndahl S; Nielsen JE; Rasmussen MR
    Water Sci Technol; 2016 Dec; 74(11):2683-2696. PubMed ID: 27973373
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Contribution of combined sewer overflows to trace contaminant loads in urban streams.
    Weyrauch P; Matzinger A; Pawlowsky-Reusing E; Plume S; von Seggern D; Heinzmann B; Schroeder K; Rouault P
    Water Res; 2010 Aug; 44(15):4451-62. PubMed ID: 20599243
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Determining the spill flow discharge of combined sewer overflows using rating curves based on computational fluid dynamics instead of the standard weir equation.
    Fach S; Sitzenfrei R; Rauch W
    Water Sci Technol; 2009; 60(12):3035-43. PubMed ID: 19955626
    [TBL] [Abstract][Full Text] [Related]  

  • 35. An agent-based approach for generating virtual sewer systems.
    Urich C; Sitzenfrei R; Möderl M; Rauch W
    Water Sci Technol; 2010; 62(5):1090-7. PubMed ID: 20818050
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A review of combined sewer overflows as a source of wastewater-derived emerging contaminants in the environment and their management.
    Petrie B
    Environ Sci Pollut Res Int; 2021 Apr; 28(25):32095-110. PubMed ID: 33914245
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Adaptation of sewer networks using integrated rehabilitation management.
    Tscheikner-Gratl F; Mikovits C; Rauch W; Kleidorfer M
    Water Sci Technol; 2014; 70(11):1847-56. PubMed ID: 25500474
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Microbial risk associated with CSOs upstream of drinking water sources in a transboundary river using hydrodynamic and water quality modeling.
    Taghipour M; Shakibaeinia A; Sylvestre É; Tolouei S; Dorner S
    Sci Total Environ; 2019 Sep; 683():547-558. PubMed ID: 31146060
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A robust and accurate surrogate method for monitoring the frequency and duration of combined sewer overflows.
    Hofer T; Montserrat A; Gruber G; Gamerith V; Corominas L; Muschalla D
    Environ Monit Assess; 2018 Mar; 190(4):209. PubMed ID: 29527633
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Not all SuDS are created equal: Impact of different approaches on combined sewer overflows.
    Joshi P; Leitão JP; Maurer M; Bach PM
    Water Res; 2021 Mar; 191():116780. PubMed ID: 33422977
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.