These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 23552252)

  • 1. Modeling of heavy metals removal from aqueous solution using activated carbon produced from cotton stalk.
    El Zayat M; Smith E
    Water Sci Technol; 2013; 67(7):1612-9. PubMed ID: 23552252
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Equilibrium analysis for heavy metal cation removal using cement kiln dust.
    El Zayat M; Elagroudy S; El Haggar S
    Water Sci Technol; 2014; 70(6):1011-8. PubMed ID: 25259489
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Removal of divalent heavy metals (Cd, Cu, Pb, and Zn) and arsenic(III) from aqueous solutions using scoria: kinetics and equilibria of sorption.
    Kwon JS; Yun ST; Lee JH; Kim SO; Jo HY
    J Hazard Mater; 2010 Feb; 174(1-3):307-13. PubMed ID: 19828237
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Montmorillonite surface properties and sorption characteristics for heavy metal removal from aqueous solutions.
    Ijagbemi CO; Baek MH; Kim DS
    J Hazard Mater; 2009 Jul; 166(1):538-46. PubMed ID: 19131158
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Removal of cationic heavy metal from aqueous solution by activated carbon impregnated with anionic surfactants.
    Ahn CK; Park D; Woo SH; Park JM
    J Hazard Mater; 2009 May; 164(2-3):1130-6. PubMed ID: 19022570
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A study on removal characteristics of heavy metals from aqueous solution by fly ash.
    Cho H; Oh D; Kim K
    J Hazard Mater; 2005 Dec; 127(1-3):187-95. PubMed ID: 16125307
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Removal of some metal ions by activated carbon prepared from Phaseolus aureus hulls.
    Rao MM; Ramana DK; Seshaiah K; Wang MC; Chien SW
    J Hazard Mater; 2009 Jul; 166(2-3):1006-13. PubMed ID: 19135782
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A descriptive model for metallic ions adsorption from aqueous solutions onto activated carbons.
    Di Natale F; Erto A; Lancia A; Musmarra D
    J Hazard Mater; 2009 Sep; 169(1-3):360-9. PubMed ID: 19411134
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sorption of arsenic, cadmium, and lead by chars produced from fast pyrolysis of wood and bark during bio-oil production.
    Mohan D; Pittman CU; Bricka M; Smith F; Yancey B; Mohammad J; Steele PH; Alexandre-Franco MF; Gómez-Serrano V; Gong H
    J Colloid Interface Sci; 2007 Jun; 310(1):57-73. PubMed ID: 17331527
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adsorption of heavy metal ions from aqueous solutions by activated carbon prepared from apricot stone.
    Kobya M; Demirbas E; Senturk E; Ince M
    Bioresour Technol; 2005 Sep; 96(13):1518-21. PubMed ID: 15939281
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Selective adsorption/recovery of Pb, Cu, and Cd with multiple fixed beds containing immobilized bacterial biomass.
    Chang JS; Huang JC
    Biotechnol Prog; 1998; 14(5):735-41. PubMed ID: 9758663
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heavy metal adsorption by a formulated zeolite-Portland cement mixture.
    Ok YS; Yang JE; Zhang YS; Kim SJ; Chung DY
    J Hazard Mater; 2007 Aug; 147(1-2):91-6. PubMed ID: 17239531
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Competitive adsorption of copper(II), cadmium(II), lead(II) and zinc(II) onto basic oxygen furnace slag.
    Xue Y; Hou H; Zhu S
    J Hazard Mater; 2009 Feb; 162(1):391-401. PubMed ID: 18579295
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling of copper(II) and lead(II) adsorption on kaolinite-based clay minerals individually and in the presence of humic acid.
    Hizal J; Apak R
    J Colloid Interface Sci; 2006 Mar; 295(1):1-13. PubMed ID: 16168423
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adsorption of Pb(II), Cr(III), Cu(II), Cd(II) and Ni(II) onto a vanadium mine tailing from aqueous solution.
    Shi T; Jia S; Chen Y; Wen Y; Du C; Guo H; Wang Z
    J Hazard Mater; 2009 Sep; 169(1-3):838-46. PubMed ID: 19427115
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adsorption of p-nitroaniline from aqueous solutions onto activated carbon fiber prepared from cotton stalk.
    Li K; Zheng Z; Feng J; Zhang J; Luo X; Zhao G; Huang X
    J Hazard Mater; 2009 Jul; 166(2-3):1180-5. PubMed ID: 19157698
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adsorption and desorption of Cu(II), Cd(II) and Pb(II) ions using chitosan crosslinked with epichlorohydrin-triphosphate as the adsorbent.
    Laus R; Costa TG; Szpoganicz B; Fávere VT
    J Hazard Mater; 2010 Nov; 183(1-3):233-41. PubMed ID: 20674156
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synergic adsorption in the simultaneous removal of acid blue 25 and heavy metals from water using a Ca(PO3)2-modified carbon.
    Tovar-Gómez R; Rivera-Ramírez DA; Hernández-Montoya V; Bonilla-Petriciolet A; Durán-Valle CJ; Montes-Morán MA
    J Hazard Mater; 2012 Jan; 199-200():290-300. PubMed ID: 22118844
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simultaneous removal of As, Cd, Cr, Cu, Ni and Zn from stormwater: experimental comparison of 11 different sorbents.
    Genç-Fuhrman H; Mikkelsen PS; Ledin A
    Water Res; 2007 Feb; 41(3):591-602. PubMed ID: 17173951
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adsorption of Cd, Cu, Ni, Pb and Zn on Sphagnum peat from solutions with low metal concentrations.
    Kalmykova Y; Strömvall AM; Steenari BM
    J Hazard Mater; 2008 Apr; 152(2):885-91. PubMed ID: 17765394
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.