These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

422 related articles for article (PubMed ID: 23552296)

  • 21. Transcription-Replication Conflict Orientation Modulates R-Loop Levels and Activates Distinct DNA Damage Responses.
    Hamperl S; Bocek MJ; Saldivar JC; Swigut T; Cimprich KA
    Cell; 2017 Aug; 170(4):774-786.e19. PubMed ID: 28802045
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Replication fork instability and the consequences of fork collisions from rereplication.
    Alexander JL; Orr-Weaver TL
    Genes Dev; 2016 Oct; 30(20):2241-2252. PubMed ID: 27898391
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Replication-Transcription Conflicts: A Perpetual War on the Chromosome.
    Browning KR; Merrikh H
    Annu Rev Biochem; 2024 Apr; ():. PubMed ID: 38594943
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Impairment of replication fork progression mediates RNA polII transcription-associated recombination.
    Prado F; Aguilera A
    EMBO J; 2005 Mar; 24(6):1267-76. PubMed ID: 15775982
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The Causes and Consequences of Topological Stress during DNA Replication.
    Keszthelyi A; Minchell NE; Baxter J
    Genes (Basel); 2016 Dec; 7(12):. PubMed ID: 28009828
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Impediments to replication fork movement: stabilisation, reactivation and genome instability.
    Lambert S; Carr AM
    Chromosoma; 2013 Mar; 122(1-2):33-45. PubMed ID: 23446515
    [TBL] [Abstract][Full Text] [Related]  

  • 27. R-loop structure: the formation and the effects on genomic stability.
    Pan X; Jiang N; Chen X; Zhou X; Ding L; Duan F
    Yi Chuan; 2014 Dec; 36(12):1185-94. PubMed ID: 25487262
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The Consequences of Replicating in the Wrong Orientation: Bacterial Chromosome Duplication without an Active Replication Origin.
    Dimude JU; Stockum A; Midgley-Smith SL; Upton AL; Foster HA; Khan A; Saunders NJ; Retkute R; Rudolph CJ
    mBio; 2015 Nov; 6(6):e01294-15. PubMed ID: 26530381
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Chromatin immunoprecipitation to detect DNA replication and repair factors.
    Gadaleta MC; Iwasaki O; Noguchi C; Noma K; Noguchi E
    Methods Mol Biol; 2015; 1300():169-86. PubMed ID: 25916713
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Interference between DNA replication and transcription as a cause of genomic instability.
    Lin YL; Pasero P
    Curr Genomics; 2012 Mar; 13(1):65-73. PubMed ID: 22942676
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The nature of mutations induced by replication–transcription collisions.
    Sankar TS; Wastuwidyaningtyas BD; Dong Y; Lewis SA; Wang JD
    Nature; 2016 Jul; 535(7610):178-81. PubMed ID: 27362223
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Bacteriophage phi29 DNA replication arrest caused by codirectional collisions with the transcription machinery.
    Elías-Arnanz M; Salas M
    EMBO J; 1997 Sep; 16(18):5775-83. PubMed ID: 9312035
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dealing with transcriptional outbursts during S phase to protect genomic integrity.
    Duch A; de Nadal E; Posas F
    J Mol Biol; 2013 Nov; 425(23):4745-55. PubMed ID: 24021813
    [TBL] [Abstract][Full Text] [Related]  

  • 34. New insight into the biology of R-loops.
    Chakraborty P
    Mutat Res; 2020; 821():111711. PubMed ID: 32516653
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Canonical DNA Repair Pathways Influence R-Loop-Driven Genome Instability.
    Stirling PC; Hieter P
    J Mol Biol; 2017 Oct; 429(21):3132-3138. PubMed ID: 27452366
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Transcription-replication coordination revealed in single live cells.
    Tsirkas I; Dovrat D; Thangaraj M; Brouwer I; Cohen A; Paleiov Z; Meijler MM; Lenstra T; Aharoni A
    Nucleic Acids Res; 2022 Feb; 50(4):2143-2156. PubMed ID: 35137218
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Resolution of head-on collisions between the transcription machinery and bacteriophage phi29 DNA polymerase is dependent on RNA polymerase translocation.
    Elías-Arnanz M; Salas M
    EMBO J; 1999 Oct; 18(20):5675-82. PubMed ID: 10523310
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Topoisomerase I suppresses genomic instability by preventing interference between replication and transcription.
    Tuduri S; Crabbé L; Conti C; Tourrière H; Holtgreve-Grez H; Jauch A; Pantesco V; De Vos J; Thomas A; Theillet C; Pommier Y; Tazi J; Coquelle A; Pasero P
    Nat Cell Biol; 2009 Nov; 11(11):1315-24. PubMed ID: 19838172
    [TBL] [Abstract][Full Text] [Related]  

  • 39. R-loop-mediated genomic instability is caused by impairment of replication fork progression.
    Gan W; Guan Z; Liu J; Gui T; Shen K; Manley JL; Li X
    Genes Dev; 2011 Oct; 25(19):2041-56. PubMed ID: 21979917
    [TBL] [Abstract][Full Text] [Related]  

  • 40. RNA polymerase II contributes to preventing transcription-mediated replication fork stalls.
    Felipe-Abrio I; Lafuente-Barquero J; García-Rubio ML; Aguilera A
    EMBO J; 2015 Jan; 34(2):236-50. PubMed ID: 25452497
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 22.