BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 23552498)

  • 1. Detecting physiological systems with laser speckle perfusion imaging of the renal cortex.
    Scully CG; Mitrou N; Braam B; Cupples WA; Chon KH
    Am J Physiol Regul Integr Comp Physiol; 2013 Jun; 304(11):R929-39. PubMed ID: 23552498
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A gap junction inhibitor, carbenoxolone, induces spatiotemporal dispersion of renal cortical perfusion and impairs autoregulation.
    Mitrou N; Braam B; Cupples WA
    Am J Physiol Heart Circ Physiol; 2016 Sep; 311(3):H582-91. PubMed ID: 27371687
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tubuloglomerular feedback-dependent modulation of renal myogenic autoregulation by nitric oxide.
    Shi Y; Wang X; Chon KH; Cupples WA
    Am J Physiol Regul Integr Comp Physiol; 2006 Apr; 290(4):R982-91. PubMed ID: 16293681
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Frequency modulation of renal myogenic autoregulation by perfusion pressure.
    Wang X; Loutzenhiser RD; Cupples WA
    Am J Physiol Regul Integr Comp Physiol; 2007 Sep; 293(3):R1199-204. PubMed ID: 17626123
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Laser speckle contrast imaging reveals large-scale synchronization of cortical autoregulation dynamics influenced by nitric oxide.
    Mitrou N; Scully CG; Braam B; Chon KH; Cupples WA
    Am J Physiol Renal Physiol; 2015 Apr; 308(7):F661-70. PubMed ID: 25587114
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Segmentation of renal perfusion signals from laser speckle imaging into clusters with phase synchronized dynamics.
    Scully CG; Mitrou N; Braam B; Cupples WA; Chon KH
    IEEE Trans Biomed Eng; 2014 Jul; 61(7):1989-97. PubMed ID: 24956617
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The step response: a method to characterize mechanisms of renal blood flow autoregulation.
    Wronski T; Seeliger E; Persson PB; Forner C; Fichtner C; Scheller J; Flemming B
    Am J Physiol Renal Physiol; 2003 Oct; 285(4):F758-64. PubMed ID: 12851255
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neuronal nitric oxide synthase inhibition sensitizes the tubuloglomerular feedback mechanism after volume expansion.
    Brown R; Ollerstam A; Persson AE
    Kidney Int; 2004 Apr; 65(4):1349-56. PubMed ID: 15086474
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detecting Interactions between the Renal Autoregulation Mechanisms in Time and Space.
    Scully CG; Mitrou N; Braam B; Cupples WA; Chon KH
    IEEE Trans Biomed Eng; 2017 Mar; 64(3):690-698. PubMed ID: 27244712
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interaction between nitric oxide and renal myogenic autoregulation in normotensive and hypertensive rats.
    Wang X; Cupples WA
    Can J Physiol Pharmacol; 2001 Mar; 79(3):238-45. PubMed ID: 11294600
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Renal hemodynamic responses to intrarenal infusion of acetylcholine: comparison with effects of PGE2 and NO donor.
    Badzyńska B; Sadowski J
    Kidney Int; 2006 May; 69(10):1774-9. PubMed ID: 16572111
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamic characteristics and underlying mechanisms of renal blood flow autoregulation in the conscious dog.
    Just A; Ehmke H; Toktomambetova L; Kirchheim HR
    Am J Physiol Renal Physiol; 2001 Jun; 280(6):F1062-71. PubMed ID: 11352846
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The influence of nitric oxide synthase 1 on blood flow and interstitial nitric oxide in the kidney.
    Kakoki M; Zou AP; Mattson DL
    Am J Physiol Regul Integr Comp Physiol; 2001 Jul; 281(1):R91-7. PubMed ID: 11404282
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Autoregulation of renal blood flow in the conscious dog and the contribution of the tubuloglomerular feedback.
    Just A; Wittmann U; Ehmke H; Kirchheim HR
    J Physiol; 1998 Jan; 506 ( Pt 1)(Pt 1):275-90. PubMed ID: 9481688
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Blood flow-dependent changes in renal interstitial guanosine 3',5'-cyclic monophosphate in rabbits.
    Nishiyama A; Kimura S; Fukui T; Rahman M; Yoneyama H; Kosaka H; Abe Y
    Am J Physiol Renal Physiol; 2002 Feb; 282(2):F238-44. PubMed ID: 11788437
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of L-NAME on intra- and inter-nephron synchronization.
    Sosnovtseva OV; Pavlov AN; Pavlova ON; Mosekilde E; Holstein-Rathlou NH
    Eur J Pharm Sci; 2009 Jan; 36(1):39-50. PubMed ID: 19028576
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interactions between nitric oxide and angiotensin II on renal cortical and papillary blood flow.
    Madrid MI; García-Salom M; Tornel J; de Gasparo M; Fenoy FJ
    Hypertension; 1997 Nov; 30(5):1175-82. PubMed ID: 9369273
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A multinephron model of renal blood flow autoregulation by tubuloglomerular feedback and myogenic response.
    Oien AH; Aukland K
    Acta Physiol Scand; 1991 Sep; 143(1):71-92. PubMed ID: 1957708
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fasudil, a Rho-kinase inhibitor, reverses L-NAME exacerbated severe nephrosclerosis in spontaneously hypertensive rats.
    Koshikawa S; Nishikimi T; Inaba C; Akimoto K; Matsuoka H
    J Hypertens; 2008 Sep; 26(9):1837-48. PubMed ID: 18698220
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Renal cortical and medullary blood flow responses to L-NAME and ANG II in wild-type, nNOS null mutant, and eNOS null mutant mice.
    Mattson DL; Meister CJ
    Am J Physiol Regul Integr Comp Physiol; 2005 Oct; 289(4):R991-7. PubMed ID: 15961532
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.