These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

353 related articles for article (PubMed ID: 23552947)

  • 1. July 2012 Greenland melt extent enhanced by low-level liquid clouds.
    Bennartz R; Shupe MD; Turner DD; Walden VP; Steffen K; Cox CJ; Kulie MS; Miller NB; Pettersen C
    Nature; 2013 Apr; 496(7443):83-6. PubMed ID: 23552947
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Climate change and forest fires synergistically drive widespread melt events of the Greenland Ice Sheet.
    Keegan KM; Albert MR; McConnell JR; Baker I
    Proc Natl Acad Sci U S A; 2014 Jun; 111(22):7964-7. PubMed ID: 24843158
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Rossby Centre Regional Atmospheric Climate Model part II: application to the Arctic climate.
    Jones CG; Wyser K; Ullerstig A; Willén U
    Ambio; 2004 Jun; 33(4-5):211-20. PubMed ID: 15264599
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Model simulations of the Arctic atmospheric boundary-layer from the SHEBA year.
    Tjernström M; Zagar M; Svensson G
    Ambio; 2004 Jun; 33(4-5):221-7. PubMed ID: 15264600
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The multi-millennial Antarctic commitment to future sea-level rise.
    Golledge NR; Kowalewski DE; Naish TR; Levy RH; Fogwill CJ; Gasson EG
    Nature; 2015 Oct; 526(7573):421-5. PubMed ID: 26469052
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microplastic pollution in the Greenland Sea: Background levels and selective contamination of planktivorous diving seabirds.
    Amélineau F; Bonnet D; Heitz O; Mortreux V; Harding AMA; Karnovsky N; Walkusz W; Fort J; Grémillet D
    Environ Pollut; 2016 Dec; 219():1131-1139. PubMed ID: 27616650
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surface-atmosphere decoupling limits accumulation at Summit, Greenland.
    Berkelhammer M; Noone DC; Steen-Larsen HC; Bailey A; Cox CJ; O'Neill MS; Schneider D; Steffen K; White JW
    Sci Adv; 2016 Apr; 2(4):e1501704. PubMed ID: 27386509
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ice-sheet response to oceanic forcing.
    Joughin I; Alley RB; Holland DM
    Science; 2012 Nov; 338(6111):1172-6. PubMed ID: 23197526
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tropical forcing of the recent rapid Arctic warming in northeastern Canada and Greenland.
    Ding Q; Wallace JM; Battisti DS; Steig EJ; Gallant AJ; Kim HJ; Geng L
    Nature; 2014 May; 509(7499):209-12. PubMed ID: 24805345
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A reconciled estimate of glacier contributions to sea level rise: 2003 to 2009.
    Gardner AS; Moholdt G; Cogley JG; Wouters B; Arendt AA; Wahr J; Berthier E; Hock R; Pfeffer WT; Kaser G; Ligtenberg SR; Bolch T; Sharp MJ; Hagen JO; van den Broeke MR; Paul F
    Science; 2013 May; 340(6134):852-7. PubMed ID: 23687045
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Future sea-level rise from Greenland's main outlet glaciers in a warming climate.
    Nick FM; Vieli A; Andersen ML; Joughin I; Payne A; Edwards TL; Pattyn F; van de Wal RS
    Nature; 2013 May; 497(7448):235-8. PubMed ID: 23657350
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Global warming: faster than expected? Loss of ice, melting of permafrost and other climate effects are occrring at an alarming pace.
    Carey J
    Sci Am; 2012 Nov; 307(5):50-5. PubMed ID: 23120895
    [No Abstract]   [Full Text] [Related]  

  • 13. Cloud-driven modulations of Greenland ice sheet surface melt.
    Niwano M; Hashimoto A; Aoki T
    Sci Rep; 2019 Jul; 9(1):10380. PubMed ID: 31316097
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recent relative sea-level trends: an attempt to quantify the forcing factors.
    Plag HP
    Philos Trans A Math Phys Eng Sci; 2006 Apr; 364(1841):821-44. PubMed ID: 16537142
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Future increases in Arctic precipitation linked to local evaporation and sea-ice retreat.
    Bintanja R; Selten FM
    Nature; 2014 May; 509(7501):479-82. PubMed ID: 24805239
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spatiotemporal variability in surface energy balance across tundra, snow and ice in Greenland.
    Lund M; Stiegler C; Abermann J; Citterio M; Hansen BU; van As D
    Ambio; 2017 Feb; 46(Suppl 1):81-93. PubMed ID: 28116688
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dramatic sea-ice melt caps tough Arctic summer.
    Witze A
    Nature; 2019 Sep; 573(7774):320-321. PubMed ID: 31530916
    [No Abstract]   [Full Text] [Related]  

  • 18. Local snow melt and temperature-but not regional sea ice-explain variation in spring phenology in coastal Arctic tundra.
    Assmann JJ; Myers-Smith IH; Phillimore AB; Bjorkman AD; Ennos RE; Prevéy JS; Henry GHR; Schmidt NM; Hollister RD
    Glob Chang Biol; 2019 Jul; 25(7):2258-2274. PubMed ID: 30963662
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Trajectory of the Arctic as an integrated system.
    Hinzman LD; Deal CJ; McGuire AD; Mernild SH; Polyakov IV; Walsh JE
    Ecol Appl; 2013 Dec; 23(8):1837-68. PubMed ID: 24555312
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Understanding global climate change: paleoclimate perspective from the world's highest mountains.
    Thompson LG
    Proc Am Philos Soc; 2010 Jun; 154(2):133-57. PubMed ID: 21553594
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.