BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

704 related articles for article (PubMed ID: 23552949)

  • 1. SIRT6 regulates TNF-α secretion through hydrolysis of long-chain fatty acyl lysine.
    Jiang H; Khan S; Wang Y; Charron G; He B; Sebastian C; Du J; Kim R; Ge E; Mostoslavsky R; Hang HC; Hao Q; Lin H
    Nature; 2013 Apr; 496(7443):110-3. PubMed ID: 23552949
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Activation of the protein deacetylase SIRT6 by long-chain fatty acids and widespread deacylation by mammalian sirtuins.
    Feldman JL; Baeza J; Denu JM
    J Biol Chem; 2013 Oct; 288(43):31350-6. PubMed ID: 24052263
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigating the Sensitivity of NAD+-dependent Sirtuin Deacylation Activities to NADH.
    Madsen AS; Andersen C; Daoud M; Anderson KA; Laursen JS; Chakladar S; Huynh FK; Colaço AR; Backos DS; Fristrup P; Hirschey MD; Olsen CA
    J Biol Chem; 2016 Mar; 291(13):7128-41. PubMed ID: 26861872
    [TBL] [Abstract][Full Text] [Related]  

  • 4. HDAC8 Catalyzes the Hydrolysis of Long Chain Fatty Acyl Lysine.
    Aramsangtienchai P; Spiegelman NA; He B; Miller SP; Dai L; Zhao Y; Lin H
    ACS Chem Biol; 2016 Oct; 11(10):2685-2692. PubMed ID: 27459069
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lysine fatty acylation promotes lysosomal targeting of TNF-α.
    Jiang H; Zhang X; Lin H
    Sci Rep; 2016 Apr; 6():24371. PubMed ID: 27079798
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SIRT6 regulates Ras-related protein R-Ras2 by lysine defatty-acylation.
    Zhang X; Spiegelman NA; Nelson OD; Jing H; Lin H
    Elife; 2017 Apr; 6():. PubMed ID: 28406396
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Understanding the Function of Mammalian Sirtuins and Protein Lysine Acylation.
    Wang M; Lin H
    Annu Rev Biochem; 2021 Jun; 90():245-285. PubMed ID: 33848425
    [TBL] [Abstract][Full Text] [Related]  

  • 8. LC-MS/MS-based quantitative study of the acyl group- and site-selectivity of human sirtuins to acylated nucleosomes.
    Tanabe K; Liu J; Kato D; Kurumizaka H; Yamatsugu K; Kanai M; Kawashima SA
    Sci Rep; 2018 Feb; 8(1):2656. PubMed ID: 29422688
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fluorogenic Assays for the Defatty-Acylase Activity of Sirtuins.
    Young Hong J; Cao J; Lin H
    Methods Mol Biol; 2019; 2009():129-136. PubMed ID: 31152400
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sirt5 is a NAD-dependent protein lysine demalonylase and desuccinylase.
    Du J; Zhou Y; Su X; Yu JJ; Khan S; Jiang H; Kim J; Woo J; Kim JH; Choi BH; He B; Chen W; Zhang S; Cerione RA; Auwerx J; Hao Q; Lin H
    Science; 2011 Nov; 334(6057):806-9. PubMed ID: 22076378
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plasmodium falciparum Sir2A preferentially hydrolyzes medium and long chain fatty acyl lysine.
    Zhu AY; Zhou Y; Khan S; Deitsch KW; Hao Q; Lin H
    ACS Chem Biol; 2012 Jan; 7(1):155-9. PubMed ID: 21992006
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient demyristoylase activity of SIRT2 revealed by kinetic and structural studies.
    Teng YB; Jing H; Aramsangtienchai P; He B; Khan S; Hu J; Lin H; Hao Q
    Sci Rep; 2015 Feb; 5():8529. PubMed ID: 25704306
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetic and Structural Basis for Acyl-Group Selectivity and NAD(+) Dependence in Sirtuin-Catalyzed Deacylation.
    Feldman JL; Dittenhafer-Reed KE; Kudo N; Thelen JN; Ito A; Yoshida M; Denu JM
    Biochemistry; 2015 May; 54(19):3037-3050. PubMed ID: 25897714
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A fluorogenic assay for screening Sirt6 modulators.
    Hu J; He B; Bhargava S; Lin H
    Org Biomol Chem; 2013 Aug; 11(32):5213-6. PubMed ID: 23839075
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differential modulation of SIRT6 deacetylase and deacylase activities by lysine-based small molecules.
    Sociali G; Liessi N; Grozio A; Caffa I; Parenti MD; Ravera S; Tasso B; Benzi A; Nencioni A; Del Rio A; Robina I; Millo E; Bruzzone S
    Mol Divers; 2020 Aug; 24(3):655-671. PubMed ID: 31240519
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanism of activation for the sirtuin 6 protein deacylase.
    Klein MA; Liu C; Kuznetsov VI; Feltenberger JB; Tang W; Denu JM
    J Biol Chem; 2020 Jan; 295(5):1385-1399. PubMed ID: 31822559
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Directed evolution of SIRT6 for improved deacylation and glucose homeostasis maintenance.
    Gertman O; Omer D; Hendler A; Stein D; Onn L; Khukhin Y; Portillo M; Zarivach R; Cohen HY; Toiber D; Aharoni A
    Sci Rep; 2018 Feb; 8(1):3538. PubMed ID: 29476161
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crystal structures of SIRT3 reveal that the α2-α3 loop and α3-helix affect the interaction with long-chain acyl lysine.
    Gai W; Li H; Jiang H; Long Y; Liu D
    FEBS Lett; 2016 Sep; 590(17):3019-28. PubMed ID: 27501476
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Finding the gas pedal on a slow sirtuin.
    Nielsen AL; Olsen CA
    J Biol Chem; 2020 Jan; 295(5):1400-1401. PubMed ID: 32005646
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Chemical Biology Approach to Reveal Sirt6-targeted Histone H3 Sites in Nucleosomes.
    Wang WW; Zeng Y; Wu B; Deiters A; Liu WR
    ACS Chem Biol; 2016 Jul; 11(7):1973-81. PubMed ID: 27152839
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 36.