BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 23553289)

  • 1. Computational design of S-nitrosothiol "click" reactions.
    Talipov MR; Khomyakov DG; Xian M; Timerghazin QK
    J Comput Chem; 2013 Jul; 34(18):1527-30. PubMed ID: 23553289
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetics and mechanism of S-nitrosothiol acid-catalyzed hydrolysis: sulfur activation promotes facile NO+ release.
    Moran EE; Timerghazin QK; Kwong E; English AM
    J Phys Chem B; 2011 Mar; 115(12):3112-26. PubMed ID: 21384833
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure and stability of HSNO, the simplest S-nitrosothiol.
    Timerghazin QK; Peslherbe GH; English AM
    Phys Chem Chem Phys; 2008 Mar; 10(11):1532-9. PubMed ID: 18327309
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protein control of S-nitrosothiol reactivity: interplay of antagonistic resonance structures.
    Talipov MR; Timerghazin QK
    J Phys Chem B; 2013 Feb; 117(6):1827-37. PubMed ID: 23316815
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transition states for the dimerization of 1,3-cyclohexadiene: a DFT, CASPT2, and CBS-QB3 quantum mechanical investigation.
    Ess DH; Hayden AE; Klärner FG; Houk KN
    J Org Chem; 2008 Oct; 73(19):7586-92. PubMed ID: 18763823
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lewis Acid Coordination Redirects S-Nitrosothiol Signaling Output.
    Hosseininasab V; McQuilken AC; Bakhoda AG; Bertke JA; Timerghazin QK; Warren TH
    Angew Chem Int Ed Engl; 2020 Jun; 59(27):10854-10858. PubMed ID: 32090399
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biological control of S-nitrosothiol reactivity: potential role of sigma-hole interactions.
    Hendinejad N; Timerghazin QK
    Phys Chem Chem Phys; 2020 Mar; 22(12):6595-6605. PubMed ID: 32159182
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Theoretical evidence that Cu(I) complexation promotes degradation of S-nitrosothiols.
    Toubin C; Yeung DY; English AM; Peslherbe GH
    J Am Chem Soc; 2002 Dec; 124(50):14816-7. PubMed ID: 12475301
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predictions of substituent effects in thermal azide 1,3-dipolar cycloadditions: implications for dynamic combinatorial (reversible) and click (irreversible) chemistry.
    Jones GO; Houk KN
    J Org Chem; 2008 Feb; 73(4):1333-42. PubMed ID: 18211089
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modulating nitric oxide release by S-nitrosothiol photocleavage: mechanism and substituent effects.
    Marazzi M; López-Delgado A; Fernández-González MA; Castaño O; Frutos LM; Temprado M
    J Phys Chem A; 2012 Jul; 116(26):7039-49. PubMed ID: 22667985
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure, stability, and substituent effects in aromatic S-nitrosothiols: the crucial effect of a cascading negative hyperconjugation/conjugation interaction.
    Flister M; Timerghazin QK
    J Phys Chem A; 2014 Oct; 118(42):9914-24. PubMed ID: 25268223
    [TBL] [Abstract][Full Text] [Related]  

  • 12. One-electron reduction of S-nitrosothiols in aqueous medium.
    Manoj VM; Mohan H; Aravind UK; Aravindakumar CT
    Free Radic Biol Med; 2006 Oct; 41(8):1240-6. PubMed ID: 17015170
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ring strain energy in the cyclooctyl system. The effect of strain energy on [3 + 2] cycloaddition reactions with azides.
    Bach RD
    J Am Chem Soc; 2009 Apr; 131(14):5233-43. PubMed ID: 19301865
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transformation of the {Fe(NO)2}9 dinitrosyl iron complexes (DNICs) into S-nitrosothiols (RSNOs) triggered by acid-base pairs.
    Tsou CC; Liaw WF
    Chemistry; 2011 Nov; 17(47):13358-66. PubMed ID: 22006643
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of Cu+ on the RS-NO bond dissociation energy of S-nitrosothiols.
    Baciu C; Cho KB; Gauld JW
    J Phys Chem B; 2005 Feb; 109(4):1334-6. PubMed ID: 16851099
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the possible biological relevance of HSNO isomers: a computational investigation.
    Ivanova LV; Anton BJ; Timerghazin QK
    Phys Chem Chem Phys; 2014 May; 16(18):8476-86. PubMed ID: 24667901
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Activation energies of pericyclic reactions: performance of DFT, MP2, and CBS-QB3 methods for the prediction of activation barriers and reaction energetics of 1,3-dipolar cycloadditions, and revised activation enthalpies for a standard set of hydrocarbon pericyclic reactions.
    Ess DH; Houk KN
    J Phys Chem A; 2005 Oct; 109(42):9542-53. PubMed ID: 16866406
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chemical methods for the direct detection and labeling of S-nitrosothiols.
    Bechtold E; King SB
    Antioxid Redox Signal; 2012 Oct; 17(7):981-91. PubMed ID: 22356122
    [TBL] [Abstract][Full Text] [Related]  

  • 19. S-nitrosothiol detection via amperometric nitric oxide sensor with surface modified hydrogel layer containing immobilized organoselenium catalyst.
    Cha W; Meyerhoff ME
    Langmuir; 2006 Dec; 22(25):10830-6. PubMed ID: 17129067
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Unprecedented External Electric Field Effects on S-Nitrosothiols: Possible Mechanism of Biological Regulation?
    Timerghazin QK; Talipov MR
    J Phys Chem Lett; 2013 Mar; 4(6):1034-8. PubMed ID: 26291373
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.