These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

298 related articles for article (PubMed ID: 23553635)

  • 1. Capacity and plasticity of potassium channels and high-affinity transporters in roots of barley and Arabidopsis.
    Coskun D; Britto DT; Li M; Oh S; Kronzucker HJ
    Plant Physiol; 2013 May; 162(1):496-511. PubMed ID: 23553635
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Ca(2+)-sensitive system mediates low-affinity K(+) uptake in the absence of AKT1 in Arabidopsis plants.
    Caballero F; Botella MA; Rubio L; Fernández JA; Martínez V; Rubio F
    Plant Cell Physiol; 2012 Dec; 53(12):2047-59. PubMed ID: 23054389
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Studies on Arabidopsis athak5, atakt1 double mutants disclose the range of concentrations at which AtHAK5, AtAKT1 and unknown systems mediate K uptake.
    Rubio F; Alemán F; Nieves-Cordones M; Martínez V
    Physiol Plant; 2010 Jun; 139(2):220-8. PubMed ID: 20088908
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Relative contribution of AtHAK5 and AtAKT1 to K+ uptake in the high-affinity range of concentrations.
    Rubio F; Nieves-Cordones M; Alemán F; Martínez V
    Physiol Plant; 2008 Dec; 134(4):598-608. PubMed ID: 19000196
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-affinity K(+) transport in Arabidopsis: AtHAK5 and AKT1 are vital for seedling establishment and postgermination growth under low-potassium conditions.
    Pyo YJ; Gierth M; Schroeder JI; Cho MH
    Plant Physiol; 2010 Jun; 153(2):863-75. PubMed ID: 20413648
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Competition between uptake of ammonium and potassium in barley and Arabidopsis roots: molecular mechanisms and physiological consequences.
    ten Hoopen F; Cuin TA; Pedas P; Hegelund JN; Shabala S; Schjoerring JK; Jahn TP
    J Exp Bot; 2010 May; 61(9):2303-15. PubMed ID: 20339151
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The high affinity K+ transporter AtHAK5 plays a physiological role in planta at very low K+ concentrations and provides a caesium uptake pathway in Arabidopsis.
    Qi Z; Hampton CR; Shin R; Barkla BJ; White PJ; Schachtman DP
    J Exp Bot; 2008; 59(3):595-607. PubMed ID: 18281719
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Complexity of potassium acquisition: how much flows through channels?
    Coskun D; Kronzucker HJ
    Plant Signal Behav; 2013 Jul; 8(7):e24799. PubMed ID: 23656868
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Arabidopsis thaliana HAK5 K+ transporter is required for plant growth and K+ acquisition from low K+ solutions under saline conditions.
    Nieves-Cordones M; Alemán F; Martínez V; Rubio F
    Mol Plant; 2010 Mar; 3(2):326-33. PubMed ID: 20028724
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The potassium transporter AtHAK5 functions in K(+) deprivation-induced high-affinity K(+) uptake and AKT1 K(+) channel contribution to K(+) uptake kinetics in Arabidopsis roots.
    Gierth M; Mäser P; Schroeder JI
    Plant Physiol; 2005 Mar; 137(3):1105-14. PubMed ID: 15734909
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Effect of AtHKT1;1 or AtSOS1 Mutation on the Expressions of Na⁺ or K⁺ Transporter Genes and Ion Homeostasis in
    Wang Q; Guan C; Wang P; Ma Q; Bao AK; Zhang JL; Wang SM
    Int J Mol Sci; 2019 Mar; 20(5):. PubMed ID: 30832374
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Arabidopsis K+ transporter HAK5-mediated high-affinity root K+ uptake is regulated by protein kinases CIPK1 and CIPK9.
    Lara A; Ródenas R; Andrés Z; Martínez V; Quintero FJ; Nieves-Cordones M; Botella MA; Rubio F
    J Exp Bot; 2020 Aug; 71(16):5053-5060. PubMed ID: 32484219
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Root K(+) acquisition in plants: the Arabidopsis thaliana model.
    Alemán F; Nieves-Cordones M; Martínez V; Rubio F
    Plant Cell Physiol; 2011 Sep; 52(9):1603-12. PubMed ID: 21771865
    [TBL] [Abstract][Full Text] [Related]  

  • 14. How high do ion fluxes go? A re-evaluation of the two-mechanism model of K(+) transport in plant roots.
    Coskun D; Britto DT; Kochian LV; Kronzucker HJ
    Plant Sci; 2016 Feb; 243():96-104. PubMed ID: 26795154
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A peroxidase contributes to ROS production during Arabidopsis root response to potassium deficiency.
    Kim MJ; Ciani S; Schachtman DP
    Mol Plant; 2010 Mar; 3(2):420-7. PubMed ID: 20139158
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation and mechanism of potassium release from barley roots: an in planta 42K+ analysis.
    Coskun D; Britto DT; Kronzucker HJ
    New Phytol; 2010 Dec; 188(4):1028-38. PubMed ID: 20731780
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional characterization of GhAKT1, a novel Shaker-like K⁺ channel gene involved in K⁺ uptake from cotton (Gossypium hirsutum).
    Xu J; Tian X; Egrinya Eneji A; Li Z
    Gene; 2014 Jul; 545(1):61-71. PubMed ID: 24802116
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rapid, futile K+ cycling and pool-size dynamics define low-affinity potassium transport in barley.
    Szczerba MW; Britto DT; Kronzucker HJ
    Plant Physiol; 2006 Aug; 141(4):1494-507. PubMed ID: 16815955
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modulation of K
    Nieves-Cordones M; Lara A; Ródenas R; Amo J; Rivero RM; Martínez V; Rubio F
    Plant Cell Environ; 2019 Aug; 42(8):2357-2371. PubMed ID: 31046137
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Potassium Transporter KUP7 Is Involved in K(+) Acquisition and Translocation in Arabidopsis Root under K(+)-Limited Conditions.
    Han M; Wu W; Wu WH; Wang Y
    Mol Plant; 2016 Mar; 9(3):437-446. PubMed ID: 26851373
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.