These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
345 related articles for article (PubMed ID: 23553656)
21. Energy gaps in Bi(2)Sr(2)CaCu(2)O(8+δ) cuprate superconductors. Ren JK; Zhu XB; Yu HF; Tian Y; Yang HF; Gu CZ; Wang NL; Ren YF; Zhao SP Sci Rep; 2012; 2():248. PubMed ID: 22355760 [TBL] [Abstract][Full Text] [Related]
22. Quantum oscillations in the high-Tc cuprates. Sebastian SE; Harrison N; Lonzarich GG Philos Trans A Math Phys Eng Sci; 2011 Apr; 369(1941):1687-711. PubMed ID: 21422021 [TBL] [Abstract][Full Text] [Related]
23. Physics of the resonating valence bond (pseudogap) state of the doped mott insulator: spin-charge locking. Anderson PW Phys Rev Lett; 2006 Jan; 96(1):017001. PubMed ID: 16486498 [TBL] [Abstract][Full Text] [Related]
24. Towards resolution of the Fermi surface in underdoped high-Tc superconductors. Sebastian SE; Harrison N; Lonzarich GG Rep Prog Phys; 2012 Oct; 75(10):102501. PubMed ID: 22986620 [TBL] [Abstract][Full Text] [Related]
25. Spectroscopic fingerprint of phase-incoherent superconductivity in the cuprate pseudogap state [corrected]. Lee J; Fujita K; Schmidt AR; Kim CK; Eisaki H; Uchida S; Davis JC Science; 2009 Aug; 325(5944):1099-103. PubMed ID: 19713522 [TBL] [Abstract][Full Text] [Related]
26. Vanishing nematic order beyond the pseudogap phase in overdoped cuprate superconductors. Gupta NK; McMahon C; Sutarto R; Shi T; Gong R; Wei HI; Shen KM; He F; Ma Q; Dragomir M; Gaulin BD; Hawthorn DG Proc Natl Acad Sci U S A; 2021 Aug; 118(34):. PubMed ID: 34413195 [TBL] [Abstract][Full Text] [Related]
27. An alternative theory on relaxation rates in cuprate superconductors. Luo N; Miley GH J Phys Condens Matter; 2009 Jan; 21(2):025701. PubMed ID: 21813989 [TBL] [Abstract][Full Text] [Related]
28. Quantum phase transition in the magnetic-field-induced normal state of optimum-doped high-Tc cuprate superconductors at low temperatures. Balakirev FF; Betts JB; Migliori A; Tsukada I; Ando Y; Boebinger GS Phys Rev Lett; 2009 Jan; 102(1):017004. PubMed ID: 19257230 [TBL] [Abstract][Full Text] [Related]
29. Exact Solution of a Two-Species Quantum Dimer Model for Pseudogap Metals. Feldmeier J; Huber S; Punk M Phys Rev Lett; 2018 May; 120(18):187001. PubMed ID: 29775366 [TBL] [Abstract][Full Text] [Related]
30. The rate of quasiparticle recombination probes the onset of coherence in cuprate superconductors. Hinton JP; Thewalt E; Alpichshev Z; Mahmood F; Koralek JD; Chan MK; Veit MJ; Dorow CJ; Barišić N; Kemper AF; Bonn DA; Hardy WN; Liang R; Gedik N; Greven M; Lanzara A; Orenstein J Sci Rep; 2016 Apr; 6():23610. PubMed ID: 27071712 [TBL] [Abstract][Full Text] [Related]
31. Thermal conductivity, Fermi pockets and superconductivity in underdoped cuprates. Xia XJ; Ng TK J Phys Condens Matter; 2009 Mar; 21(11):115703. PubMed ID: 21693926 [TBL] [Abstract][Full Text] [Related]
32. Change of carrier density at the pseudogap critical point of a cuprate superconductor. Badoux S; Tabis W; Laliberté F; Grissonnanche G; Vignolle B; Vignolles D; Béard J; Bonn DA; Hardy WN; Liang R; Doiron-Leyraud N; Taillefer L; Proust C Nature; 2016 Mar; 531(7593):210-4. PubMed ID: 26901870 [TBL] [Abstract][Full Text] [Related]
33. Evidence for pairing above the transition temperature of cuprate superconductors from the electronic dispersion in the pseudogap phase. Kanigel A; Chatterjee U; Randeria M; Norman MR; Koren G; Kadowaki K; Campuzano JC Phys Rev Lett; 2008 Sep; 101(13):137002. PubMed ID: 18851483 [TBL] [Abstract][Full Text] [Related]
34. Evolution of Pairing Orders between Pseudogap and Superconducting Phases of Cuprate Superconductors. Tu WL; Lee TK Sci Rep; 2019 Feb; 9(1):1719. PubMed ID: 30737472 [TBL] [Abstract][Full Text] [Related]
35. Connecting high-field quantum oscillations to zero-field electron spectral functions in the underdoped cuprates. Allais A; Chowdhury D; Sachdev S Nat Commun; 2014 Dec; 5():5771. PubMed ID: 25493606 [TBL] [Abstract][Full Text] [Related]
36. Abrupt onset of a second energy gap at the superconducting transition of underdoped Bi2212. Lee WS; Vishik IM; Tanaka K; Lu DH; Sasagawa T; Nagaosa N; Devereaux TP; Hussain Z; Shen ZX Nature; 2007 Nov; 450(7166):81-4. PubMed ID: 17972881 [TBL] [Abstract][Full Text] [Related]
37. Effects of quasiparticle ambipolarity on the nernst effect in underdoped cuprate superconductors. Tewari S; Zhang C Phys Rev Lett; 2009 Aug; 103(7):077001. PubMed ID: 19792675 [TBL] [Abstract][Full Text] [Related]
38. Pseudogap in cuprates driven by D-wave flux-phase order proximity effects: a theoretical analysis from Raman and ARPES experiments. Greco A; Bejas M J Phys Condens Matter; 2014 Dec; 26(48):485701. PubMed ID: 25380387 [TBL] [Abstract][Full Text] [Related]
39. A phenomenological theory of the anomalous pseudogap phase in underdoped cuprates. Rice TM; Yang KY; Zhang FC Rep Prog Phys; 2012 Jan; 75(1):016502. PubMed ID: 22790307 [TBL] [Abstract][Full Text] [Related]
40. Two-component energy spectrum of cuprates in the pseudogap phase and its evolution with temperature and at charge ordering. Gor'kov LP; Teitel'baum GB Sci Rep; 2015 Feb; 5():8524. PubMed ID: 25688011 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]