These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 23553833)

  • 61. Elucidation of Xylem-Specific Transcription Factors and Absolute Quantification of Enzymes Regulating Cellulose Biosynthesis in Populus trichocarpa.
    Loziuk PL; Parker J; Li W; Lin CY; Wang JP; Li Q; Sederoff RR; Chiang VL; Muddiman DC
    J Proteome Res; 2015 Oct; 14(10):4158-68. PubMed ID: 26325666
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Genome-Wide Analysis of ResD, NsrR, and Fur Binding in Bacillus subtilis during Anaerobic Fermentative Growth by
    Chumsakul O; Anantsri DP; Quirke T; Oshima T; Nakamura K; Ishikawa S; Nakano MM
    J Bacteriol; 2017 Jul; 199(13):. PubMed ID: 28439033
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Functional redundancy of transcription factors explains why most binding targets of a transcription factor are not affected when the transcription factor is knocked out.
    Wu WS; Lai FJ
    BMC Syst Biol; 2015; 9 Suppl 6(Suppl 6):S2. PubMed ID: 26678747
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Systematic target function annotation of human transcription factors.
    Li YF; Altman RB
    BMC Biol; 2018 Jan; 16(1):4. PubMed ID: 29325558
    [TBL] [Abstract][Full Text] [Related]  

  • 65. In vitro DNA-binding profile of transcription factors: methods and new insights.
    Wang J; Lu J; Gu G; Liu Y
    J Endocrinol; 2011 Jul; 210(1):15-27. PubMed ID: 21389103
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Synthetic and genomic regulatory elements reveal aspects of
    King DM; Hong CKY; Shepherdson JL; Granas DM; Maricque BB; Cohen BA
    Elife; 2020 Feb; 9():. PubMed ID: 32043966
    [TBL] [Abstract][Full Text] [Related]  

  • 67. The patterns of histone modifications in the vicinity of transcription factor binding sites in human lymphoblastoid cell lines.
    Nie Y; Liu H; Sun X
    PLoS One; 2013; 8(3):e60002. PubMed ID: 23527292
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Protein binding microarrays for the characterization of DNA-protein interactions.
    Bulyk ML
    Adv Biochem Eng Biotechnol; 2007; 104():65-85. PubMed ID: 17290819
    [TBL] [Abstract][Full Text] [Related]  

  • 69. DeFine: deep convolutional neural networks accurately quantify intensities of transcription factor-DNA binding and facilitate evaluation of functional non-coding variants.
    Wang M; Tai C; E W; Wei L
    Nucleic Acids Res; 2018 Jun; 46(11):e69. PubMed ID: 29617928
    [TBL] [Abstract][Full Text] [Related]  

  • 70. TF-Cluster: a pipeline for identifying functionally coordinated transcription factors via network decomposition of the shared coexpression connectivity matrix (SCCM).
    Nie J; Stewart R; Zhang H; Thomson JA; Ruan F; Cui X; Wei H
    BMC Syst Biol; 2011 Apr; 5():53. PubMed ID: 21496241
    [TBL] [Abstract][Full Text] [Related]  

  • 71. footprintDB: a database of transcription factors with annotated cis elements and binding interfaces.
    Sebastian A; Contreras-Moreira B
    Bioinformatics; 2014 Jan; 30(2):258-65. PubMed ID: 24234003
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Gene-centered yeast one-hybrid assays.
    Reece-Hoyes JS; Walhout AJ
    Methods Mol Biol; 2012; 812():189-208. PubMed ID: 22218861
    [TBL] [Abstract][Full Text] [Related]  

  • 73. hTFtarget: A Comprehensive Database for Regulations of Human Transcription Factors and Their Targets.
    Zhang Q; Liu W; Zhang HM; Xie GY; Miao YR; Xia M; Guo AY
    Genomics Proteomics Bioinformatics; 2020 Apr; 18(2):120-128. PubMed ID: 32858223
    [TBL] [Abstract][Full Text] [Related]  

  • 74. iFORM: Incorporating Find Occurrence of Regulatory Motifs.
    Ren C; Chen H; Yang B; Liu F; Ouyang Z; Bo X; Shu W
    PLoS One; 2016; 11(12):e0168607. PubMed ID: 27992540
    [TBL] [Abstract][Full Text] [Related]  

  • 75. From experiment-driven database analyses to database-driven experiments in Arabidopsis thaliana transcription factor research.
    Hehl R
    Plant Sci; 2017 Sep; 262():141-147. PubMed ID: 28716409
    [TBL] [Abstract][Full Text] [Related]  

  • 76. mTFkb: a knowledgebase for fundamental annotation of mouse transcription factors.
    Sun K; Wang H; Sun H
    Sci Rep; 2017 Jun; 7(1):3022. PubMed ID: 28596516
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Using protein-binding microarrays to study transcription factor specificity: homologs, isoforms and complexes.
    Andrilenas KK; Penvose A; Siggers T
    Brief Funct Genomics; 2015 Jan; 14(1):17-29. PubMed ID: 25431149
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Development of a fluorescent microsphere-based multiplexed high-throughput assay system for profiling of transcription factor activation.
    Yaoi T; Jiang X; Li X
    Assay Drug Dev Technol; 2006 Jun; 4(3):285-92. PubMed ID: 16834534
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Evaluation of methods for modeling transcription factor sequence specificity.
    Weirauch MT; Cote A; Norel R; Annala M; Zhao Y; Riley TR; Saez-Rodriguez J; Cokelaer T; Vedenko A; Talukder S; ; Bussemaker HJ; Morris QD; Bulyk ML; Stolovitzky G; Hughes TR
    Nat Biotechnol; 2013 Feb; 31(2):126-34. PubMed ID: 23354101
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Most of the tight positional conservation of transcription factor binding sites near the transcription start site reflects their co-localization within regulatory modules.
    Acevedo-Luna N; Mariño-Ramírez L; Halbert A; Hansen U; Landsman D; Spouge JL
    BMC Bioinformatics; 2016 Nov; 17(1):479. PubMed ID: 27871221
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.