These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 23553833)

  • 81. Proteomic and bioinformatic analysis of a nuclear intrinsically disordered proteome.
    Skupien-Rabian B; Jankowska U; Swiderska B; Lukasiewicz S; Ryszawy D; Dziedzicka-Wasylewska M; Kedracka-Krok S
    J Proteomics; 2016 Jan; 130():76-84. PubMed ID: 26376097
    [TBL] [Abstract][Full Text] [Related]  

  • 82. COPS: detecting co-occurrence and spatial arrangement of transcription factor binding motifs in genome-wide datasets.
    Ha N; Polychronidou M; Lohmann I
    PLoS One; 2012; 7(12):e52055. PubMed ID: 23272209
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Improved linking of motifs to their TFs using domain information.
    Baumgarten N; Schmidt F; Schulz MH
    Bioinformatics; 2020 Mar; 36(6):1655-1662. PubMed ID: 31742324
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Bioinformatic cis-element analyses performed in Arabidopsis and rice disclose bZIP- and MYB-related binding sites as potential AuxRE-coupling elements in auxin-mediated transcription.
    Berendzen KW; Weiste C; Wanke D; Kilian J; Harter K; Dröge-Laser W
    BMC Plant Biol; 2012 Aug; 12():125. PubMed ID: 22852874
    [TBL] [Abstract][Full Text] [Related]  

  • 85. [Establishment of a New-generation High-throughput Proteomic Profiling of Transcription Factor in Human Atrial Tissue].
    Wang MY; Huo Q; Yang YN
    Sichuan Da Xue Xue Bao Yi Xue Ban; 2021 Mar; 52(2):274-278. PubMed ID: 33829702
    [TBL] [Abstract][Full Text] [Related]  

  • 86. TFforge utilizes large-scale binding site divergence to identify transcriptional regulators involved in phenotypic differences.
    Langer BE; Hiller M
    Nucleic Acids Res; 2019 Feb; 47(4):e19. PubMed ID: 30496469
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Computational identification of transcription factor binding sites via a transcription-factor-centric clustering (TFCC) algorithm.
    Zhu Z; Pilpel Y; Church GM
    J Mol Biol; 2002 Apr; 318(1):71-81. PubMed ID: 12054769
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Identification of Transcription Factors Involved in the Regulation of Flowering in
    Zhou A; Sun H; Dai S; Feng S; Zhang J; Gong S; Wang J
    Genes (Basel); 2019 Apr; 10(4):. PubMed ID: 31003538
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Intermolecular epistasis shaped the function and evolution of an ancient transcription factor and its DNA binding sites.
    Anderson DW; McKeown AN; Thornton JW
    Elife; 2015 Jun; 4():e07864. PubMed ID: 26076233
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Enhancer function regulated by combinations of transcription factors and cofactors.
    Nakagawa T; Yoneda M; Higashi M; Ohkuma Y; Ito T
    Genes Cells; 2018 Oct; 23(10):808-821. PubMed ID: 30092612
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Screening of promoter-specific transcription factors: multiple regulators for the sdiA gene involved in cell division control and quorum sensing.
    Shimada K; Ogasawara H; Yamada K; Shimura M; Kori A; Shimada T; Yamanaka Y; Yamamoto K; Ishihama A
    Microbiology (Reading); 2013 Dec; 159(Pt 12):2501-2512. PubMed ID: 24025606
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Identification of interacting transcription factors regulating tissue gene expression in human.
    Hu Z; Gallo SM
    BMC Genomics; 2010 Jan; 11():49. PubMed ID: 20085649
    [TBL] [Abstract][Full Text] [Related]  

  • 93. High resolution models of transcription factor-DNA affinities improve in vitro and in vivo binding predictions.
    Agius P; Arvey A; Chang W; Noble WS; Leslie C
    PLoS Comput Biol; 2010 Sep; 6(9):. PubMed ID: 20838582
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Key regulators control distinct transcriptional programmes in blood progenitor and mast cells.
    Calero-Nieto FJ; Ng FS; Wilson NK; Hannah R; Moignard V; Leal-Cervantes AI; Jimenez-Madrid I; Diamanti E; Wernisch L; Göttgens B
    EMBO J; 2014 Jun; 33(11):1212-26. PubMed ID: 24760698
    [TBL] [Abstract][Full Text] [Related]  

  • 95. NextPBM: a platform to study cell-specific transcription factor binding and cooperativity.
    Mohaghegh N; Bray D; Keenan J; Penvose A; Andrilenas KK; Ramlall V; Siggers T
    Nucleic Acids Res; 2019 Apr; 47(6):e31. PubMed ID: 30657937
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Current strategies and progress for targeting the "undruggable" transcription factors.
    Zhuang JJ; Liu Q; Wu DL; Tie L
    Acta Pharmacol Sin; 2022 Oct; 43(10):2474-2481. PubMed ID: 35132191
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Mutational processes in cancer preferentially affect binding of particular transcription factors.
    Liu M; Boot A; Ng AWT; Gordân R; Rozen SG
    Sci Rep; 2021 Feb; 11(1):3339. PubMed ID: 33558557
    [TBL] [Abstract][Full Text] [Related]  

  • 98. A modified CUT&RUN protocol and analysis pipeline to identify transcription factor binding sites in human cell lines.
    Kong NR; Chai L; Tenen DG; Bassal MA
    STAR Protoc; 2021 Sep; 2(3):100750. PubMed ID: 34458869
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Modulating gene regulation function by chemically controlled transcription factor clustering.
    Wu J; Chen B; Liu Y; Ma L; Huang W; Lin Y
    Nat Commun; 2022 May; 13(1):2663. PubMed ID: 35562359
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Identifying Transcription Factors That Prefer Binding to Methylated DNA Using Reduced
    Nguyen QH; Tran HV; Nguyen BP; Do TTT
    ACS Omega; 2022 Sep; 7(36):32322-32330. PubMed ID: 36119976
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.