These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

298 related articles for article (PubMed ID: 23553839)

  • 1. Funnel metadynamics as accurate binding free-energy method.
    Limongelli V; Bonomi M; Parrinello M
    Proc Natl Acad Sci U S A; 2013 Apr; 110(16):6358-63. PubMed ID: 23553839
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ligand binding free-energy calculations with funnel metadynamics.
    Raniolo S; Limongelli V
    Nat Protoc; 2020 Sep; 15(9):2837-2866. PubMed ID: 32814837
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigating drug-target association and dissociation mechanisms using metadynamics-based algorithms.
    Cavalli A; Spitaleri A; Saladino G; Gervasio FL
    Acc Chem Res; 2015 Feb; 48(2):277-85. PubMed ID: 25496113
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prediction of SAMPL4 host-guest binding affinities using funnel metadynamics.
    Hsiao YW; Söderhjelm P
    J Comput Aided Mol Des; 2014 Apr; 28(4):443-54. PubMed ID: 24535628
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ligand binding to telomeric G-quadruplex DNA investigated by funnel-metadynamics simulations.
    Moraca F; Amato J; Ortuso F; Artese A; Pagano B; Novellino E; Alcaro S; Parrinello M; Limongelli V
    Proc Natl Acad Sci U S A; 2017 Mar; 114(11):E2136-E2145. PubMed ID: 28232513
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Flexible docking in solution using metadynamics.
    Gervasio FL; Laio A; Parrinello M
    J Am Chem Soc; 2005 Mar; 127(8):2600-7. PubMed ID: 15725015
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Open Binding Pose Metadynamics: An Effective Approach for the Ranking of Protein-Ligand Binding Poses.
    Lukauskis D; Samways ML; Aureli S; Cossins BP; Taylor RD; Gervasio FL
    J Chem Inf Model; 2022 Dec; 62(23):6209-6216. PubMed ID: 36401553
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Accelerating the Calculation of Protein-Ligand Binding Free Energy and Residence Times Using Dynamically Optimized Collective Variables.
    Brotzakis ZF; Limongelli V; Parrinello M
    J Chem Theory Comput; 2019 Jan; 15(1):743-750. PubMed ID: 30537822
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Receptor rigidity and ligand mobility in trypsin-ligand complexes.
    Guvench O; Price DJ; Brooks CL
    Proteins; 2005 Feb; 58(2):407-17. PubMed ID: 15578663
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Combining Machine Learning and Enhanced Sampling Techniques for Efficient and Accurate Calculation of Absolute Binding Free Energies.
    Evans R; Hovan L; Tribello GA; Cossins BP; Estarellas C; Gervasio FL
    J Chem Theory Comput; 2020 Jul; 16(7):4641-4654. PubMed ID: 32427471
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Calculation of protein-ligand binding free energy by using a polarizable potential.
    Jiao D; Golubkov PA; Darden TA; Ren P
    Proc Natl Acad Sci U S A; 2008 Apr; 105(17):6290-5. PubMed ID: 18427113
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Trypsin-ligand binding free energy calculation with AMOEBA.
    Shi Y; Jiao D; Schnieders MJ; Ren P
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():2328-31. PubMed ID: 19965178
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exploring the Ligand Binding/Unbinding Pathway by Selectively Enhanced Sampling of Ligand in a Protein-Ligand Complex.
    Shao Q; Zhu W
    J Phys Chem B; 2019 Sep; 123(38):7974-7983. PubMed ID: 31478672
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predicting and Understanding the Enzymatic Inhibition of Human Peroxiredoxin 5 by 4-Substituted Pyrocatechols by Combining Funnel Metadynamics, Solution NMR, and Steady-State Kinetics.
    Chow ML; Troussicot L; Martin M; Doumèche B; Guillière F; Lancelin JM
    Biochemistry; 2016 Jun; 55(24):3469-80. PubMed ID: 27239955
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Non-Boltzmann thermodynamic integration (NBTI) for macromolecular systems: relative free energy of binding of trypsin to benzamidine and benzylamine.
    Ota N; Stroupe C; Ferreira-da-Silva JM; Shah SA; Mares-Guia M; Brunger AT
    Proteins; 1999 Dec; 37(4):641-53. PubMed ID: 10651279
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In silico carborane docking to proteins and potential drug targets.
    Calvaresi M; Zerbetto F
    J Chem Inf Model; 2011 Aug; 51(8):1882-96. PubMed ID: 21774557
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computer simulation of protein-ligand interactions: challenges and applications.
    Hassan SA; Gracia L; Vasudevan G; Steinbach PJ
    Methods Mol Biol; 2005; 305():451-92. PubMed ID: 15940011
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An Efficient Metadynamics-Based Protocol To Model the Binding Affinity and the Transition State Ensemble of G-Protein-Coupled Receptor Ligands.
    Saleh N; Ibrahim P; Saladino G; Gervasio FL; Clark T
    J Chem Inf Model; 2017 May; 57(5):1210-1217. PubMed ID: 28453271
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Locating binding poses in protein-ligand systems using reconnaissance metadynamics.
    Söderhjelm P; Tribello GA; Parrinello M
    Proc Natl Acad Sci U S A; 2012 Apr; 109(14):5170-5. PubMed ID: 22440749
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metadynamics-Based Approaches for Modeling the Hypoxia-Inducible Factor 2α Ligand Binding Process.
    Callea L; Bonati L; Motta S
    J Chem Theory Comput; 2021 Jul; 17(7):3841-3851. PubMed ID: 34082524
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.