These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 23553875)

  • 1. Copper-chaperones with dicoordinated Cu(I)--unique protection mechanism.
    Ansbacher T; Chourasia M; Shurki A
    Proteins; 2013 Aug; 81(8):1411-9. PubMed ID: 23553875
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Peptide models of Cu(I) and Zn(II) metallochaperones: the effect of pH on coordination and mechanistic implications.
    Shoshan MS; Shalev DE; Tshuva EY
    Inorg Chem; 2013 Mar; 52(6):2993-3000. PubMed ID: 23458158
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Determinants for simultaneous binding of copper and platinum to human chaperone Atox1: hitchhiking not hijacking.
    Palm-Espling ME; Andersson CD; Björn E; Linusson A; Wittung-Stafshede P
    PLoS One; 2013; 8(7):e70473. PubMed ID: 23936210
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Redox sulfur chemistry of the copper chaperone Atox1 is regulated by the enzyme glutaredoxin 1, the reduction potential of the glutathione couple GSSG/2GSH and the availability of Cu(I).
    Brose J; La Fontaine S; Wedd AG; Xiao Z
    Metallomics; 2014 Apr; 6(4):793-808. PubMed ID: 24522867
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predicting the coordination number within copper chaperones: Atox1 as case study.
    Ansbacher T; Shurki A
    J Phys Chem B; 2012 Apr; 116(15):4425-32. PubMed ID: 22480337
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computer simulation of the interaction of Cu(I) with cys residues at the binding site of the yeast metallochaperone Cu(I)-Atx1.
    Dalosto SD
    J Phys Chem B; 2007 Mar; 111(11):2932-40. PubMed ID: 17388422
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oxidation of Human Copper Chaperone Atox1 and Disulfide Bond Cleavage by Cisplatin and Glutathione.
    Nardella MI; Rosato A; Belviso BD; Caliandro R; Natile G; Arnesano F
    Int J Mol Sci; 2019 Sep; 20(18):. PubMed ID: 31500118
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure and dynamics of Cu(I) binding in copper chaperones Atox1 and CopZ: a computer simulation study.
    Rodriguez-Granillo A; Wittung-Stafshede P
    J Phys Chem B; 2008 Apr; 112(15):4583-93. PubMed ID: 18361527
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Human cytoplasmic copper chaperones Atox1 and CCS exchange copper ions in vitro.
    Petzoldt S; Kahra D; Kovermann M; Dingeldein AP; Niemiec MS; Ådén J; Wittung-Stafshede P
    Biometals; 2015 Jun; 28(3):577-85. PubMed ID: 25673218
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conserved residue modulates copper-binding properties through structural dynamics in human copper chaperone Atox1.
    Xi Z; Shi C; Tian C; Liu Y
    Metallomics; 2013 Nov; 5(11):1566-73. PubMed ID: 24056613
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Extended functional repertoire for human copper chaperones.
    Matson Dzebo M; Ariöz C; Wittung-Stafshede P
    Biomol Concepts; 2016 Feb; 7(1):29-39. PubMed ID: 26745464
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tuning of copper-loop flexibility in Bacillus subtilis CopZ copper chaperone: role of conserved residues.
    Rodriguez-Granillo A; Wittung-Stafshede P
    J Phys Chem B; 2009 Feb; 113(7):1919-32. PubMed ID: 19170606
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cu(I) Controls Conformational States in Human Atox1 Metallochaperone: An EPR and Multiscale Simulation Study.
    Perkal O; Qasem Z; Turgeman M; Schwartz R; Gevorkyan-Airapetov L; Pavlin M; Magistrato A; Major DT; Ruthstein S
    J Phys Chem B; 2020 Jun; 124(22):4399-4411. PubMed ID: 32396355
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of extracellular Cys/Trp motif between Schizosaccharomyces pombe Ctr4 and Ctr5.
    Okada M; Miura T; Nakabayashi T
    J Inorg Biochem; 2017 Apr; 169():97-105. PubMed ID: 28167404
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural biology of cisplatin complexes with cellular targets: the adduct with human copper chaperone atox1 in aqueous solution.
    Calandrini V; Nguyen TH; Arnesano F; Galliani A; Ippoliti E; Carloni P; Natile G
    Chemistry; 2014 Sep; 20(37):11719-25. PubMed ID: 25111319
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of New Potential Interaction Partners for Human Cytoplasmic Copper Chaperone Atox1: Roles in Gene Regulation?
    Öhrvik H; Wittung-Stafshede P
    Int J Mol Sci; 2015 Jul; 16(8):16728-39. PubMed ID: 26213915
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Copper transfer from the Cu(I) chaperone, CopZ, to the repressor, Zn(II)CopY: metal coordination environments and protein interactions.
    Cobine PA; George GN; Jones CE; Wickramasinghe WA; Solioz M; Dameron CT
    Biochemistry; 2002 May; 41(18):5822-9. PubMed ID: 11980486
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Atox1 contains positive residues that mediate membrane association and aid subsequent copper loading.
    Flores AG; Unger VM
    J Membr Biol; 2013 Dec; 246(12):903-13. PubMed ID: 24036897
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Infrared spectroscopy of Cu+(H2O)(n) and Ag+(H2O)(n): coordination and solvation of noble-metal ions.
    Iino T; Ohashi K; Inoue K; Judai K; Nishi N; Sekiya H
    J Chem Phys; 2007 May; 126(19):194302. PubMed ID: 17523799
    [TBL] [Abstract][Full Text] [Related]  

  • 20. X-ray absorption spectroscopy of the copper chaperone HAH1 reveals a linear two-coordinate Cu(I) center capable of adduct formation with exogenous thiols and phosphines.
    Ralle M; Lutsenko S; Blackburn NJ
    J Biol Chem; 2003 Jun; 278(25):23163-70. PubMed ID: 12686548
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.