BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 23554001)

  • 1. Development of aquatic toxicity benchmarks for oil products using species sensitivity distributions.
    Barron MG; Hemmer MJ; Jackson CR
    Integr Environ Assess Manag; 2013 Oct; 9(4):610-5. PubMed ID: 23554001
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Toxicity of oil spill response agents and crude oils to five aquatic test species.
    Barron MG; Bejarano AC; Conmy RN; Sundaravadivelu D; Meyer P
    Mar Pollut Bull; 2020 Apr; 153():110954. PubMed ID: 32056858
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative toxicity of eight oil dispersants, Louisiana sweet crude oil (LSC), and chemically dispersed LSC to two aquatic test species.
    Hemmer MJ; Barron MG; Greene RM
    Environ Toxicol Chem; 2011 Oct; 30(10):2244-52. PubMed ID: 21766318
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of in silico development of aquatic toxicity species sensitivity distributions.
    Barron MG; Jackson CR; Awkerman JA
    Aquat Toxicol; 2012 Jul; 116-117():1-7. PubMed ID: 22459408
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Augmenting aquatic species sensitivity distributions with interspecies toxicity estimation models.
    Awkerman JA; Raimondo S; Jackson CR; Barron MG
    Environ Toxicol Chem; 2014 Mar; 33(3):688-95. PubMed ID: 24214839
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Species sensitivity distribution evaluation for chronic nickel toxicity to marine organisms.
    DeForest DK; Schlekat CE
    Integr Environ Assess Manag; 2013 Oct; 9(4):580-9. PubMed ID: 23553986
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Critical review and analysis of aquatic toxicity data on oil spill dispersants.
    Bejarano AC
    Environ Toxicol Chem; 2018 Dec; 37(12):2989-3001. PubMed ID: 30125977
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development and practical application of petroleum and dispersant interspecies correlation models for aquatic species.
    Bejarano AC; Barron MG
    Environ Sci Technol; 2014 Apr; 48(8):4564-72. PubMed ID: 24678991
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Relative sensitivity of Arctic species to physically and chemically dispersed oil determined from three hydrocarbon measures of aquatic toxicity.
    Bejarano AC; Gardiner WW; Barron MG; Word JQ
    Mar Pollut Bull; 2017 Sep; 122(1-2):316-322. PubMed ID: 28684107
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sensitivity of polar and temperate marine organisms to oil components.
    de Hoop L; Schipper AM; Leuven RS; Huijbregts MA; Olsen GH; Smit MG; Hendriks AJ
    Environ Sci Technol; 2011 Oct; 45(20):9017-23. PubMed ID: 21902216
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Estimation of vanadium water quality benchmarks for the protection of aquatic life with relevance to the Athabasca Oil Sands region using species sensitivity distributions.
    Schiffer S; Liber K
    Environ Toxicol Chem; 2017 Nov; 36(11):3034-3044. PubMed ID: 28636253
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improving environmental assessments by integrating Species Sensitivity Distributions into environmental modeling: examples with two hypothetical oil spills.
    Bejarano AC; Mearns AJ
    Mar Pollut Bull; 2015 Apr; 93(1-2):172-82. PubMed ID: 25736814
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dispersant Corexit 9500A and chemically dispersed crude oil decreases the growth rates of meroplanktonic barnacle nauplii (Amphibalanus improvisus) and tornaria larvae (Schizocardium sp.).
    Almeda R; Bona S; Foster CR; Buskey EJ
    Mar Environ Res; 2014 Aug; 99():212-7. PubMed ID: 25028258
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synergistic toxicity of Macondo crude oil and dispersant Corexit 9500A(®) to the Brachionus plicatilis species complex (Rotifera).
    Rico-Martínez R; Snell TW; Shearer TL
    Environ Pollut; 2013 Feb; 173():5-10. PubMed ID: 23195520
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative toxicity of oil, dispersant, and oil plus dispersant to several marine species.
    Fuller C; Bonner J; Page C; Ernest A; McDonald T; McDonald S
    Environ Toxicol Chem; 2004 Dec; 23(12):2941-9. PubMed ID: 15648769
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Comparative Assessment of the Aquatic Toxicity of Corexit 9500 to Marine Organisms.
    Echols BS; Langdon CJ; Stubblefield WA; Rand GM; Gardinali PR
    Arch Environ Contam Toxicol; 2019 Jul; 77(1):40-50. PubMed ID: 30255342
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An initial probabilistic hazard assessment of oil dispersants approved by the United States National Contingency Plan.
    Berninger JP; Williams ES; Brooks BW
    Environ Toxicol Chem; 2011 Jul; 30(7):1704-8. PubMed ID: 21425326
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Determination of aquatic hazard concentrations for the oil spill response product class of surface washing agents using species sensitivity distributions.
    Alloy M; Sundaravadivelu D; Conmy R; Meyer P; Barron MG
    Mar Pollut Bull; 2023 Aug; 193():115063. PubMed ID: 37302201
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative Toxicity of Oil Spill Herding Agents to Aquatic Species.
    Alloy MM; Sundaravadivelu D; Moso E; Meyer P; Barron MG
    Environ Toxicol Chem; 2022 May; 41(5):1311-1318. PubMed ID: 35156233
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chronic Toxicity of Unweathered and Weathered Macondo Oils to Mysid Shrimp (Americamysis bahia) and Inland Silversides (Menidia beryllina).
    Echols B; Smith A; Gardinali PR; Rand GM
    Arch Environ Contam Toxicol; 2016 Jul; 71(1):78-86. PubMed ID: 27090525
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.