These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
138 related articles for article (PubMed ID: 23554060)
1. Elimination half-life as a metric for the bioaccumulation potential of chemicals in aquatic and terrestrial food chains. Goss KU; Brown TN; Endo S Environ Toxicol Chem; 2013 Jul; 32(7):1663-71. PubMed ID: 23554060 [TBL] [Abstract][Full Text] [Related]
2. Use of trophic magnification factors and related measures to characterize bioaccumulation potential of chemicals. Conder JM; Gobas FA; Borgå K; Muir DC; Powell DE Integr Environ Assess Manag; 2012 Jan; 8(1):85-97. PubMed ID: 21538835 [TBL] [Abstract][Full Text] [Related]
3. How reliable are field-derived biomagnification factors and trophic magnification factors as indicators of bioaccumulation potential? Conclusions from a case study on per- and polyfluoroalkyl substances. Franklin J Integr Environ Assess Manag; 2016 Jan; 12(1):6-20. PubMed ID: 25845916 [TBL] [Abstract][Full Text] [Related]
4. Use of terrestrial field studies in the derivation of bioaccumulation potential of chemicals. van den Brink NW; Arblaster JA; Bowman SR; Conder JM; Elliott JE; Johnson MS; Muir DC; Natal-da-Luz T; Rattner BA; Sample BE; Shore RF Integr Environ Assess Manag; 2016 Jan; 12(1):135-45. PubMed ID: 26436822 [TBL] [Abstract][Full Text] [Related]
5. Revisiting elimination half live as an indicator for bioaccumulation in fish and terrestrial mammals. Goss KU; Linden L; Ulrich N; Schlechtriem C Chemosphere; 2018 Nov; 210():341-346. PubMed ID: 30007188 [TBL] [Abstract][Full Text] [Related]
6. Trophic magnification factors: considerations of ecology, ecosystems, and study design. Borgå K; Kidd KA; Muir DC; Berglund O; Conder JM; Gobas FA; Kucklick J; Malm O; Powell DE Integr Environ Assess Manag; 2012 Jan; 8(1):64-84. PubMed ID: 21674770 [TBL] [Abstract][Full Text] [Related]
7. Evaluating the roles of biotransformation, spatial concentration differences, organism home range, and field sampling design on trophic magnification factors. Kim J; Gobas FA; Arnot JA; Powell DE; Seston RM; Woodburn KB Sci Total Environ; 2016 May; 551-552():438-51. PubMed ID: 26891010 [TBL] [Abstract][Full Text] [Related]
8. Evaluation of bioaccumulation using in vivo laboratory and field studies. Weisbrod AV; Woodburn KB; Koelmans AA; Parkerton TF; McElroy AE; Borgå K Integr Environ Assess Manag; 2009 Oct; 5(4):598-623. PubMed ID: 19552500 [TBL] [Abstract][Full Text] [Related]
9. Comparison of bioconcentration and biomagnification factors for poorly water-soluble chemicals using common carp (Cyprinus carpio L.). Inoue Y; Hashizume N; Yoshida T; Murakami H; Suzuki Y; Koga Y; Takeshige R; Kikushima E; Yakata N; Otsuka M Arch Environ Contam Toxicol; 2012 Aug; 63(2):241-8. PubMed ID: 22484798 [TBL] [Abstract][Full Text] [Related]
10. Methods for assessing the bioaccumulation of hydrocarbons and related substances in terrestrial organisms: A critical review. Gobas FAPC; Lee YS; Fremlin KM; Stelmachuk SC; Redman AD Integr Environ Assess Manag; 2023 Nov; 19(6):1433-1456. PubMed ID: 36880196 [TBL] [Abstract][Full Text] [Related]
11. Mathematical relationships between metrics of chemical bioaccumulation in fish. Mackay D; Arnot JA; Gobas FA; Powell DE Environ Toxicol Chem; 2013 Jul; 32(7):1459-66. PubMed ID: 23440888 [TBL] [Abstract][Full Text] [Related]
12. Medium-chain chlorinated paraffins (MCCPs): a review of bioaccumulation potential in the aquatic environment. Thompson R; Vaughan M Integr Environ Assess Manag; 2014 Jan; 10(1):78-86. PubMed ID: 23788380 [TBL] [Abstract][Full Text] [Related]
13. Bioaccumulation of hexachlorobenzene in the terrestrial isopod Porcellio scaber. Kampe S; Schlechtriem C Environ Toxicol Chem; 2016 Nov; 35(11):2867-2873. PubMed ID: 27144377 [TBL] [Abstract][Full Text] [Related]
15. Normalizing the Biomagnification Factor. Gobas FAPC; Lee YS; Arnot JA Environ Toxicol Chem; 2021 Apr; 40(4):1204-1211. PubMed ID: 33289926 [TBL] [Abstract][Full Text] [Related]
16. Bioaccumulation of short chain chlorinated paraffins in a typical freshwater food web contaminated by e-waste in south china: Bioaccumulation factors, tissue distribution, and trophic transfer. Sun R; Luo X; Tang B; Chen L; Liu Y; Mai B Environ Pollut; 2017 Mar; 222():165-174. PubMed ID: 28040337 [TBL] [Abstract][Full Text] [Related]
17. A terrestrial food-chain bioaccumulation model for POPs. Armitage JM; Gobas FA Environ Sci Technol; 2007 Jun; 41(11):4019-25. PubMed ID: 17612184 [TBL] [Abstract][Full Text] [Related]
18. Revisiting bioaccumulation criteria for POPs and PBT assessments. Gobas FA; de Wolf W; Burkhard LP; Verbruggen E; Plotzke K Integr Environ Assess Manag; 2009 Oct; 5(4):624-37. PubMed ID: 19552497 [TBL] [Abstract][Full Text] [Related]
19. An evaluation of bioaccumulation data for hexachlorobenzene to derive water quality standards according to the EU-WFD methodology. Moermond CT; Verbruggen EM Integr Environ Assess Manag; 2013 Jan; 9(1):87-97. PubMed ID: 22791265 [TBL] [Abstract][Full Text] [Related]
20. Explaining differences between bioaccumulation measurements in laboratory and field data through use of a probabilistic modeling approach. Selck H; Drouillard K; Eisenreich K; Koelmans AA; Palmqvist A; Ruus A; Salvito D; Schultz I; Stewart R; Weisbrod A; van den Brink NW; van den Heuvel-Greve M Integr Environ Assess Manag; 2012 Jan; 8(1):42-63. PubMed ID: 21538836 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]