BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

291 related articles for article (PubMed ID: 23554296)

  • 1. Alternating block polyurethanes based on PCL and PEG as potential nerve regeneration materials.
    Li G; Li D; Niu Y; He T; Chen KC; Xu K
    J Biomed Mater Res A; 2014 Mar; 102(3):685-97. PubMed ID: 23554296
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A comparative study on structure-property elucidation of P3/4HB and PEG-based block polyurethanes.
    Li G; Liu Y; Li D; Zhang L; Xu K
    J Biomed Mater Res A; 2012 Sep; 100(9):2319-29. PubMed ID: 22529029
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis, characterizations and biocompatibility of alternating block polyurethanes based on P3/4HB and PPG-PEG-PPG.
    Li G; Li P; Qiu H; Li D; Su M; Xu K
    J Biomed Mater Res A; 2011 Jul; 98(1):88-99. PubMed ID: 21538829
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis, characterization, and biocompatibility of alternating block polyurethanes based on PLA and PEG.
    Mei T; Zhu Y; Ma T; He T; Li L; Wei C; Xu K
    J Biomed Mater Res A; 2014 Sep; 102(9):3243-54. PubMed ID: 24133043
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Scaffolds from block polyurethanes based on poly(ɛ-caprolactone) (PCL) and poly(ethylene glycol) (PEG) for peripheral nerve regeneration.
    Niu Y; Chen KC; He T; Yu W; Huang S; Xu K
    Biomaterials; 2014 May; 35(14):4266-77. PubMed ID: 24582378
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Scaffolds from alternating block polyurethanes of poly(ɛ-caprolactone) and poly(ethylene glycol) with stimulation and guidance of nerve growth and better nerve repair than autograft.
    Niu Y; Li L; Chen KC; Chen F; Liu X; Ye J; Li W; Xu K
    J Biomed Mater Res A; 2015 Jul; 103(7):2355-64. PubMed ID: 25410272
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis, characterizations, and biocompatibility of block poly(ester-urethane)s based on biodegradable poly(3-hydroxybutyrate-co-4-hydroxybutyrate) (P3/4HB) and poly(ε-caprolactone).
    Qiu H; Li D; Chen X; Fan K; Ou W; Chen KC; Xu K
    J Biomed Mater Res A; 2013 Jan; 101(1):75-86. PubMed ID: 22826204
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preparation and properties of biomedical segmented polyurethanes based on poly(ether ester) and uniform-size diurethane diisocyanates.
    Yin S; Xia Y; Jia Q; Hou ZS; Zhang N
    J Biomater Sci Polym Ed; 2017 Jan; 28(1):119-138. PubMed ID: 27774855
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis and wound healing of alternating block polyurethanes based on poly(lactic acid) (PLA) and poly(ethylene glycol) (PEG).
    Li L; Liu X; Niu Y; Ye J; Huang S; Liu C; Xu K
    J Biomed Mater Res B Appl Biomater; 2017 Jul; 105(5):1200-1209. PubMed ID: 27059634
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Alternative block polyurethanes based on poly(3-hydroxybutyrate-co-4-hydroxybutyrate) and poly(ethylene glycol).
    Pan J; Li G; Chen Z; Chen X; Zhu W; Xu K
    Biomaterials; 2009 Jun; 30(16):2975-84. PubMed ID: 19230967
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biodegradable hyperbranched amphiphilic polyurethane multiblock copolymers consisting of poly(propylene glycol), poly(ethylene glycol), and polycaprolactone as in situ thermogels.
    Li Z; Zhang Z; Liu KL; Ni X; Li J
    Biomacromolecules; 2012 Dec; 13(12):3977-89. PubMed ID: 23167676
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis, characterization and biocompatibility of biodegradable elastomeric poly(ether-ester urethane)s Based on Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) and Poly(ethylene glycol) via melting polymerization.
    Li Z; Yang X; Wu L; Chen Z; Lin Y; Xu K; Chen GQ
    J Biomater Sci Polym Ed; 2009; 20(9):1179-202. PubMed ID: 19520007
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The degradation and biocompatibility of pH-sensitive biodegradable polyurethanes for intracellular multifunctional antitumor drug delivery.
    Zhou L; Liang D; He X; Li J; Tan H; Li J; Fu Q; Gu Q
    Biomaterials; 2012 Mar; 33(9):2734-45. PubMed ID: 22236829
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Designing poly[(R)-3-hydroxybutyrate]-based polyurethane block copolymers for electrospun nanofiber scaffolds with improved mechanical properties and enhanced mineralization capability.
    Liu KL; Choo ES; Wong SY; Li X; He CB; Wang J; Li J
    J Phys Chem B; 2010 Jun; 114(22):7489-98. PubMed ID: 20469884
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biocompatibility of poly(epsilon-caprolactone)/poly(ethylene glycol) diblock copolymers with nanophase separation.
    Hsu SH; Tang CM; Lin CC
    Biomaterials; 2004 Nov; 25(25):5593-601. PubMed ID: 15159075
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis and characterization of phosphoryl-choline-capped poly(epsilon-caprolactone)-poly(ethylene oxide) di-block co-polymers and its surface modification on polyurethanes.
    Zhang T; Song Z; Chen H; Yu X; Jiang Z
    J Biomater Sci Polym Ed; 2008; 19(4):509-24. PubMed ID: 18318962
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Block poly(ester-urethane)s based on poly(3-hydroxybutyrate-co-4-hydroxybutyrate) and poly(3-hydroxyhexanoate-co-3-hydroxyoctanoate).
    Chen Z; Cheng S; Xu K
    Biomaterials; 2009 Apr; 30(12):2219-30. PubMed ID: 19167751
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis and water-swelling of thermo-responsive poly(ester urethane)s containing poly(epsilon-caprolactone), poly(ethylene glycol) and poly(propylene glycol).
    Loh XJ; Colin Sng KB; Li J
    Biomaterials; 2008 Aug; 29(22):3185-94. PubMed ID: 18456319
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis of a novel biomedical poly(ester urethane) based on aliphatic uniform-size diisocyanate and the blood compatibility of PEG-grafted surfaces.
    Liu X; Xia Y; Liu L; Zhang D; Hou Z
    J Biomater Appl; 2018 May; 32(10):1329-1342. PubMed ID: 29547018
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Control of hyperbranched structure of polycaprolactone/poly(ethylene glycol) polyurethane block copolymers by glycerol and their hydrogels for potential cell delivery.
    Li Z; Li J
    J Phys Chem B; 2013 Nov; 117(47):14763-74. PubMed ID: 24175974
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.