These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 23554437)

  • 21. Adaptive behavior of cortical neurons during a perturbed arm-reaching movement in a nonhuman primate.
    Weber DJ; He J
    Prog Brain Res; 2004; 143():477-90. PubMed ID: 14653190
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Computational nature of human adaptive control during learning of reaching movements in force fields.
    Bhushan N; Shadmehr R
    Biol Cybern; 1999 Jul; 81(1):39-60. PubMed ID: 10434390
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Motor control of voluntary arm movements. Kinematic and modelling study.
    Corradini ML; Gentilucci M; Leo T; Rizzolatti G
    Biol Cybern; 1992; 67(4):347-60. PubMed ID: 1515513
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Trajectory formation based on physiological characteristics of skeletal muscles.
    Kashima T; Isurugi Y
    Biol Cybern; 1998 Jun; 78(6):413-22. PubMed ID: 9711815
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Visual gravity influences arm movement planning.
    Sciutti A; Demougeot L; Berret B; Toma S; Sandini G; Papaxanthis C; Pozzo T
    J Neurophysiol; 2012 Jun; 107(12):3433-45. PubMed ID: 22442569
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Task-dependent motor learning.
    Kurtzer I; DiZio P; Lackner J
    Exp Brain Res; 2003 Nov; 153(1):128-32. PubMed ID: 14566446
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Synergistic control of joint angle variability: influence of target shape.
    Krüger M; Borbély B; Eggert T; Straube A
    Hum Mov Sci; 2012 Oct; 31(5):1071-89. PubMed ID: 22244105
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Separate adaptive mechanisms for controlling trajectory and final position in reaching.
    Scheidt RA; Ghez C
    J Neurophysiol; 2007 Dec; 98(6):3600-13. PubMed ID: 17913996
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Using arm configuration to learn the effects of gyroscopes and other devices.
    Flanders M; Hondzinski JM; Soechting JF; Jackson JC
    J Neurophysiol; 2003 Jan; 89(1):450-9. PubMed ID: 12522193
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Role of sensory information in updating internal models of the effector during arm tracking.
    Vercher JL; Sarès F; Blouin J; Bourdin C; Gauthier G
    Prog Brain Res; 2003; 142():203-22. PubMed ID: 12693263
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Properties of synergies arising from a theory of optimal motor behavior.
    Chhabra M; Jacobs RA
    Neural Comput; 2006 Oct; 18(10):2320-42. PubMed ID: 16907628
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Interlimb transfer of visuomotor rotations: independence of direction and final position information.
    Sainburg RL; Wang J
    Exp Brain Res; 2002 Aug; 145(4):437-47. PubMed ID: 12172655
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Minimum acceleration criterion with constraints implies bang-bang control as an underlying principle for optimal trajectories of arm reaching movements.
    Ben-Itzhak S; Karniel A
    Neural Comput; 2008 Mar; 20(3):779-812. PubMed ID: 18045017
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Reach adaptation: what determines whether we learn an internal model of the tool or adapt the model of our arm?
    Kluzik J; Diedrichsen J; Shadmehr R; Bastian AJ
    J Neurophysiol; 2008 Sep; 100(3):1455-64. PubMed ID: 18596187
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Quantifying generalization from trial-by-trial behavior of adaptive systems that learn with basis functions: theory and experiments in human motor control.
    Donchin O; Francis JT; Shadmehr R
    J Neurosci; 2003 Oct; 23(27):9032-45. PubMed ID: 14534237
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Integrating reinforcement learning, equilibrium points, and minimum variance to understand the development of reaching: a computational model.
    Caligiore D; Parisi D; Baldassarre G
    Psychol Rev; 2014 Jul; 121(3):389-421. PubMed ID: 25090425
    [TBL] [Abstract][Full Text] [Related]  

  • 37. On Configuration Trajectory Formation in Spatiotemporal Profile for Reproducing Human Hand Reaching Movement.
    Chen W; Xiong C; Yue S
    IEEE Trans Cybern; 2016 Mar; 46(3):804-16. PubMed ID: 25850100
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of human arm impedance on dynamics learning and generalization.
    Darainy M; Mattar AA; Ostry DJ
    J Neurophysiol; 2009 Jun; 101(6):3158-68. PubMed ID: 19357340
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Computational reproductions of external force field adaption without assuming desired trajectories.
    Kambara H; Takagi A; Shimizu H; Kawase T; Yoshimura N; Schweighofer N; Koike Y
    Neural Netw; 2021 Jul; 139():179-198. PubMed ID: 33740581
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Impedance control and internal model formation when reaching in a randomly varying dynamical environment.
    Takahashi CD; Scheidt RA; Reinkensmeyer DJ
    J Neurophysiol; 2001 Aug; 86(2):1047-51. PubMed ID: 11495973
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.