These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 23554438)

  • 21. Neural Maps of Interaural Time Difference in the American Alligator: A Stable Feature in Modern Archosaurs.
    Kettler L; Carr CE
    J Neurosci; 2019 May; 39(20):3882-3896. PubMed ID: 30886018
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The role of GABAergic inhibition in processing of interaural time difference in the owl's auditory system.
    Fujita I; Konishi M
    J Neurosci; 1991 Mar; 11(3):722-39. PubMed ID: 2002359
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Computation of interaural time difference in the owl's coincidence detector neurons.
    Funabiki K; Ashida G; Konishi M
    J Neurosci; 2011 Oct; 31(43):15245-56. PubMed ID: 22031870
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Microsecond precision of phase delay in the auditory system of the barn owl.
    Wagner H; Brill S; Kempter R; Carr CE
    J Neurophysiol; 2005 Aug; 94(2):1655-8. PubMed ID: 15843477
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Variability reduction in interaural time difference tuning in the barn owl.
    Fischer BJ; Konishi M
    J Neurophysiol; 2008 Aug; 100(2):708-15. PubMed ID: 18509071
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Signatures of Somatic Inhibition and Dendritic Excitation in Auditory Brainstem Field Potentials.
    Goldwyn JH; McLaughlin M; Verschooten E; Joris PX; Rinzel J
    J Neurosci; 2017 Oct; 37(43):10451-10467. PubMed ID: 28947575
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A circuit for detection of interaural time differences in the nucleus laminaris of turtles.
    Willis KL; Carr CE
    J Exp Biol; 2017 Nov; 220(Pt 22):4270-4281. PubMed ID: 28947499
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Passive soma facilitates submillisecond coincidence detection in the owl's auditory system.
    Ashida G; Abe K; Funabiki K; Konishi M
    J Neurophysiol; 2007 Mar; 97(3):2267-82. PubMed ID: 17135480
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Structure and dynamics that specialize neurons for high-frequency coincidence detection in the barn owl nucleus laminaris.
    Drucker B; Goldwyn JH
    Biol Cybern; 2023 Apr; 117(1-2):143-162. PubMed ID: 37129628
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Theoretical foundations of the sound analog membrane potential that underlies coincidence detection in the barn owl.
    Ashida G; Funabiki K; Carr CE
    Front Comput Neurosci; 2013; 7():151. PubMed ID: 24265616
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A model of the medial superior olive explains spatiotemporal features of local field potentials.
    Goldwyn JH; Mc Laughlin M; Verschooten E; Joris PX; Rinzel J
    J Neurosci; 2014 Aug; 34(35):11705-22. PubMed ID: 25164666
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of GABA on the processing of interaural time differences in nucleus laminaris neurons in the chick.
    Brückner S; Hyson RL
    Eur J Neurosci; 1998 Nov; 10(11):3438-50. PubMed ID: 9824457
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The Role of Conduction Delay in Creating Sensitivity to Interaural Time Differences.
    Carr C; Ashida G; Wagner H; McColgan T; Kempter R
    Adv Exp Med Biol; 2016; 894():189-196. PubMed ID: 27080659
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Noise reduction of coincidence detector output by the inferior colliculus of the barn owl.
    Christianson GB; Peña JL
    J Neurosci; 2006 May; 26(22):5948-54. PubMed ID: 16738236
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Responses of neurons in the auditory pathway of the barn owl to partially correlated binaural signals.
    Albeck Y; Konishi M
    J Neurophysiol; 1995 Oct; 74(4):1689-700. PubMed ID: 8989405
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Detection of interaural time differences in the alligator.
    Carr CE; Soares D; Smolders J; Simon JZ
    J Neurosci; 2009 Jun; 29(25):7978-90. PubMed ID: 19553438
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Experience-Dependent Plasticity in Nucleus Laminaris of the Barn Owl.
    Carr CE; Wang T; Kraemer I; Capshaw G; Ashida G; Koeppl C; Kempter R; Kuokkanen PT
    bioRxiv; 2023 May; ():. PubMed ID: 36778252
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Distribution of interaural time difference in the barn owl's inferior colliculus in the low- and high-frequency ranges.
    Wagner H; Asadollahi A; Bremen P; Endler F; Vonderschen K; von Campenhausen M
    J Neurosci; 2007 Apr; 27(15):4191-200. PubMed ID: 17428997
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Synaptic depression in the localization of sound.
    Cook DL; Schwindt PC; Grande LA; Spain WJ
    Nature; 2003 Jan; 421(6918):66-70. PubMed ID: 12511955
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Binaural characteristics of units in the owl's brainstem auditory pathway: precursors of restricted spatial receptive fields.
    Moiseff A; Konishi M
    J Neurosci; 1983 Dec; 3(12):2553-62. PubMed ID: 6655499
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.