These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
132 related articles for article (PubMed ID: 23554584)
1. Scaling Law for Cross-stream Diffusion in Microchannels under Combined Electroosmotic and Pressure Driven Flow. Song H; Wang Y; Pant K Microfluid Nanofluidics; 2013 Jan; 14(1-2):371-382. PubMed ID: 23554584 [TBL] [Abstract][Full Text] [Related]
2. Cross-stream diffusion under pressure-driven flow in microchannels with arbitrary aspect ratios: a phase diagram study using a three-dimensional analytical model. Song H; Wang Y; Pant K Microfluid Nanofluidics; 2012 Jan; 12(1-4):265-277. PubMed ID: 22247719 [TBL] [Abstract][Full Text] [Related]
3. Tradeoff between mixing and transport for electroosmotic flow in heterogeneous microchannels with nonuniform surface potentials. Tian F; Li B; Kwok DY Langmuir; 2005 Feb; 21(3):1126-31. PubMed ID: 15667199 [TBL] [Abstract][Full Text] [Related]
4. Electroosmotic flows of non-Newtonian power-law fluids in a cylindrical microchannel. Zhao C; Yang C Electrophoresis; 2013 Mar; 34(5):662-7. PubMed ID: 23229874 [TBL] [Abstract][Full Text] [Related]
5. Numerical study of enhanced mixing in pressure-driven flows in microchannels using a spatially periodic electric field. Krishnaveni T; Renganathan T; Picardo JR; Pushpavanam S Phys Rev E; 2017 Sep; 96(3-1):033117. PubMed ID: 29347018 [TBL] [Abstract][Full Text] [Related]
6. Electroosmotic flow in microchannels with arbitrary geometry and arbitrary distribution of wall charge. Xuan X; Li D J Colloid Interface Sci; 2005 Sep; 289(1):291-303. PubMed ID: 16009236 [TBL] [Abstract][Full Text] [Related]
7. An analytic description of electrodynamic dispersion in free-flow zone electrophoresis. Dutta D J Chromatogr A; 2015 Jul; 1404():124-30. PubMed ID: 26044384 [TBL] [Abstract][Full Text] [Related]
8. Frequency-dependent laminar electroosmotic flow in a closed-end rectangular microchannel. Marcos ; Yang C; Ooi KT; Wong TN; Masliyah JH J Colloid Interface Sci; 2004 Jul; 275(2):679-98. PubMed ID: 15178303 [TBL] [Abstract][Full Text] [Related]
9. Electroosmotic flows in microchannels with finite inertial and pressure forces. Santiago JG Anal Chem; 2001 May; 73(10):2353-65. PubMed ID: 11393863 [TBL] [Abstract][Full Text] [Related]
10. Generation of arbitrary monotonic concentration profiles by a serial dilution microfluidic network composed of microchannels with a high fluidic-resistance ratio. Hattori K; Sugiura S; Kanamori T Lab Chip; 2009 Jun; 9(12):1763-72. PubMed ID: 19495461 [TBL] [Abstract][Full Text] [Related]
11. Numerical analysis of field-modulated electroosmotic flows in microchannels with arbitrary numbers and configurations of discrete electrodes. Chao K; Chen B; Wu J Biomed Microdevices; 2010 Dec; 12(6):959-66. PubMed ID: 20668948 [TBL] [Abstract][Full Text] [Related]
12. Analytical solution of time periodic electroosmotic flows: analogies to Stokes' second problem. Duttat P; Beskok A Anal Chem; 2001 Nov; 73(21):5097-102. PubMed ID: 11721905 [TBL] [Abstract][Full Text] [Related]
14. Effect of magnetic field on electroosmotic flow of viscoelastic fluids in a microchannel. Wang X; Qiao Y; Qi H; Xu H Electrophoresis; 2021 Nov; 42(21-22):2347-2355. PubMed ID: 33811361 [TBL] [Abstract][Full Text] [Related]
15. Electroosmotic Flow of Viscoelastic Fluid in a Nanoslit. Mei L; Zhang H; Meng H; Qian S Micromachines (Basel); 2018 Mar; 9(4):. PubMed ID: 30424089 [TBL] [Abstract][Full Text] [Related]
16. Streaming potential and electroosmotic flow in heterogeneous circular microchannels with nonuniform zeta potentials: requirements of flow rate and current continuities. Yang J; Masliyah JH; Kwok DY Langmuir; 2004 May; 20(10):3863-71. PubMed ID: 15969372 [TBL] [Abstract][Full Text] [Related]
17. Electroosmotic flow velocity measurements in a square microchannel. Hsieh SS; Lin HC; Lin CY Colloid Polym Sci; 2006; 284(11):1275-1286. PubMed ID: 24058237 [TBL] [Abstract][Full Text] [Related]
18. Comprehensive model of electromigrative transport in microfluidic paper based analytical devices. Schaumburg F; Kler PA; Berli CLA Electrophoresis; 2020 Apr; 41(7-8):598-606. PubMed ID: 31904869 [TBL] [Abstract][Full Text] [Related]
19. Modeling of nucleic acid adsorption on 3D prisms in microchannels. Hu Y; Li D Anal Chim Acta; 2007 Jan; 581(1):42-52. PubMed ID: 17386424 [TBL] [Abstract][Full Text] [Related]
20. Theoretical analysis of molecular diffusion in pressure-driven laminar flow in microfluidic channels. Kamholz AE; Yager P Biophys J; 2001 Jan; 80(1):155-60. PubMed ID: 11159391 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]