These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Effects of ion size, ion valence and pH of electrolyte solutions on EOF velocity in single nanochannels. Li J; Peng R; Li D Anal Chim Acta; 2019 Jun; 1059():68-79. PubMed ID: 30876634 [TBL] [Abstract][Full Text] [Related]
23. Cross-Sectional Dimension Dependence of Electroosmotic Flow in Fractal Treelike Rectangular Microchannel Network. Jing D; Zhan X Micromachines (Basel); 2020 Mar; 11(3):. PubMed ID: 32143450 [TBL] [Abstract][Full Text] [Related]
24. Approximate Solution for Electroosmotic Flow of Power-Law Fluids in a Planar Microchannel with Asymmetric Electrochemical Boundary Conditions. Choi W; Yun S; Choi DS Micromachines (Basel); 2018 May; 9(6):. PubMed ID: 30424198 [TBL] [Abstract][Full Text] [Related]
26. Electric field gradient focusing in microchannels with embedded bipolar electrode. Hlushkou D; Perdue RK; Dhopeshwarkar R; Crooks RM; Tallarek U Lab Chip; 2009 Jul; 9(13):1903-13. PubMed ID: 19532966 [TBL] [Abstract][Full Text] [Related]
27. Electroosmotic flow in single PDMS nanochannels. Peng R; Li D Nanoscale; 2016 Jun; 8(24):12237-46. PubMed ID: 27256765 [TBL] [Abstract][Full Text] [Related]
28. Analytical Solution of Time-Periodic Electroosmotic Flow through Cylindrical Microchannel with Non-Uniform Surface Potential. Khan AI; Dutta P Micromachines (Basel); 2019 Jul; 10(8):. PubMed ID: 31357437 [TBL] [Abstract][Full Text] [Related]
29. Effects of ionic concentration gradient on electroosmotic flow mixing in a microchannel. Peng R; Li D J Colloid Interface Sci; 2015 Feb; 440():126-32. PubMed ID: 25460698 [TBL] [Abstract][Full Text] [Related]
30. Electroosmotic Flow of Viscoelastic Fluid through a Constriction Microchannel. Ji J; Qian S; Liu Z Micromachines (Basel); 2021 Apr; 12(4):. PubMed ID: 33918910 [TBL] [Abstract][Full Text] [Related]
31. Influence of the three-dimensional heterogeneous roughness on electrokinetic transport in microchannels. Hu Y; Werner C; Li D J Colloid Interface Sci; 2004 Dec; 280(2):527-36. PubMed ID: 15533426 [TBL] [Abstract][Full Text] [Related]
32. Electroosmotic Mixing of Non-Newtonian Fluid in a Microchannel with Obstacles and Zeta Potential Heterogeneity. Mei L; Cui D; Shen J; Dutta D; Brown W; Zhang L; Dabipi IK Micromachines (Basel); 2021 Apr; 12(4):. PubMed ID: 33919798 [TBL] [Abstract][Full Text] [Related]
33. Modeling and Analysis of the Electrokinetic Mass Transport and Adsorption Mechanisms of a Charged Adsorbate in Capillary Electrochromatography Systems Employing Charged Nonporous Adsorbent Particles. Grimes BA; Liapis AI J Colloid Interface Sci; 2001 Feb; 234(1):223-243. PubMed ID: 11161509 [TBL] [Abstract][Full Text] [Related]
35. The Parametric Study of Electroosmotically Driven Flow of Power-Law Fluid in a Cylindrical Microcapillary at High Zeta Potential. Deng S Micromachines (Basel); 2017 Nov; 8(12):. PubMed ID: 30400535 [TBL] [Abstract][Full Text] [Related]
36. Joule heating effects on electroosmotic entry flow. Prabhakaran RA; Zhou Y; Patel S; Kale A; Song Y; Hu G; Xuan X Electrophoresis; 2017 Mar; 38(5):572-579. PubMed ID: 27557612 [TBL] [Abstract][Full Text] [Related]
37. An Exact Solution for Power-Law Fluids in a Slit Microchannel with Different Zeta Potentials under Electroosmotic Forces. Choi DS; Yun S; Choi W Micromachines (Basel); 2018 Oct; 9(10):. PubMed ID: 30424437 [TBL] [Abstract][Full Text] [Related]
38. Flow behavior of periodical electroosmosis in microchannel for biochips. Wang X; Wu J J Colloid Interface Sci; 2006 Jan; 293(2):483-8. PubMed ID: 16061240 [TBL] [Abstract][Full Text] [Related]
39. Electroosmotic flow velocity in DNA modified nanochannels. Li J; Li D J Colloid Interface Sci; 2019 Oct; 553():31-39. PubMed ID: 31181468 [TBL] [Abstract][Full Text] [Related]