These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 23554584)

  • 41. Numerical Study of the Time-Periodic Electroosmotic Flow of Viscoelastic Fluid through a Short Constriction Microchannel.
    Ji J; Qian S; Parker AM; Zhang X
    Micromachines (Basel); 2023 Nov; 14(11):. PubMed ID: 38004934
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Effect of viscoelasticity on the flow pattern and the volumetric flow rate in electroosmotic flows through a microchannel.
    Park HM; Lee WM
    Lab Chip; 2008 Jul; 8(7):1163-70. PubMed ID: 18584093
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Electroosmotic flow in a water column surrounded by an immiscible liquid.
    Movahed S; Khani S; Wen JZ; Li D
    J Colloid Interface Sci; 2012 Apr; 372(1):207-11. PubMed ID: 22336326
    [TBL] [Abstract][Full Text] [Related]  

  • 44. pH Change in Electroosmotic Flow Hysteresis.
    Lim CY; Lim AE; Lam YC
    Anal Chem; 2017 Sep; 89(17):9394-9399. PubMed ID: 28737036
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Alternating Current Electroosmotic Flow of Maxwell Fluid in a Parallel Plate Microchannel with Sinusoidal Roughness.
    Chang L; Zhao G; Buren M; Sun Y; Jian Y
    Micromachines (Basel); 2023 Dec; 15(1):. PubMed ID: 38276832
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Thermally Fully Developed Electroosmotic Flow of Power-Law Nanofluid in a Rectangular Microchannel.
    Deng S
    Micromachines (Basel); 2019 May; 10(6):. PubMed ID: 31151264
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Finite element simulation of pinched pressure-driven flow injection in microchannels.
    Bai X; Josserand J; Jensen H; Rossier JS; Girault HH
    Anal Chem; 2002 Dec; 74(24):6205-15. PubMed ID: 12510740
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Hydrodynamic dispersion due to combined pressure-driven and electroosmotic flow through microchannels with a thin double layer.
    Zholkovskij EK; Masliyah JH
    Anal Chem; 2004 May; 76(10):2708-18. PubMed ID: 15144179
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Electroosmotic shear flow in microchannels.
    Mampallil D; van den Ende D
    J Colloid Interface Sci; 2013 Jan; 390(1):234-41. PubMed ID: 23089595
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Interfacial Electric Effects on a Non-Isothermal Electroosmotic Flow in a Microcapillary Tube Filled by Two Immiscible Fluids.
    Matías A; Méndez F; Bautista O
    Micromachines (Basel); 2017 Jul; 8(8):. PubMed ID: 30400424
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Effect of electrical double layer on electric conductivity and pressure drop in a pressure-driven microchannel flow.
    Ban H; Lin B; Song Z
    Biomicrofluidics; 2010 Feb; 4(1):14104. PubMed ID: 20644673
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Influence of varying electroosmotic flow on the effective diffusion in electric field gradient separations.
    Maynes D; Tenny J; Webbd BW; Lee ML
    Electrophoresis; 2008 Feb; 29(3):549-60. PubMed ID: 18200632
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Numerical solution of a multi-ion one-potential model for electroosmotic flow in two-dimensional rectangular microchannels.
    Van Theemsche A; Deconinck J; Van den Bossche B; Bortels L
    Anal Chem; 2002 Oct; 74(19):4919-26. PubMed ID: 12380813
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Electroosmotically driven capillary transport of typical non-Newtonian biofluids in rectangular microchannels.
    Chakraborty S
    Anal Chim Acta; 2007 Dec; 605(2):175-84. PubMed ID: 18036381
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Numerical calculation of the electroosmotic flow at the cross region in microfluidic chips.
    Jin Y; Luo GA
    Electrophoresis; 2003 Apr; 24(7-8):1242-52. PubMed ID: 12707918
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Effect of nanostructures orientation on electroosmotic flow in a microfluidic channel.
    Lim AE; Lim CY; Lam YC; Taboryski R; Wang SR
    Nanotechnology; 2017 Jun; 28(25):255303. PubMed ID: 28510536
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Efficient electroosmotic mixing in a narrow-fluidic channel: the role of a patterned soft layer.
    Gaikwad HS; Kumar G; Mondal PK
    Soft Matter; 2020 Jul; 16(27):6304-6316. PubMed ID: 32572423
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Analysis of electroosmotic flow of power-law fluids in a slit microchannel.
    Zhao C; Zholkovskij E; Masliyah JH; Yang C
    J Colloid Interface Sci; 2008 Oct; 326(2):503-10. PubMed ID: 18656891
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Electroosmotic flow in a capillary annulus with high zeta potentials.
    Kang Y; Yang C; Huang X
    J Colloid Interface Sci; 2002 Sep; 253(2):285-94. PubMed ID: 16290861
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Electro-osmotic flow in a rotating rectangular microchannel.
    Ng CO; Qi C
    Proc Math Phys Eng Sci; 2015 Jul; 471(2179):20150200. PubMed ID: 26345088
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.