BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 23554840)

  • 1. A general framework for modeling sub- and ultraharmonics of ultrasound contrast agent signals with MISO volterra series.
    Sbeity F; Ménigot S; Charara J; Girault JM
    Comput Math Methods Med; 2013; 2013():934538. PubMed ID: 23554840
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Generation of ultraharmonics in surfactant based ultrasound contrast agents: use and advantages.
    Basude R; Wheatley MA
    Ultrasonics; 2001 Oct; 39(6):437-44. PubMed ID: 11775659
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On the advantages of multi-input single-output parallel cascade classifiers.
    Green JR; Korenberg MJ
    Ann Biomed Eng; 2006 Apr; 34(4):709-16. PubMed ID: 16538545
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Theoretical predictions of harmonic generation from submicron ultrasound contrast agents for nonlinear biomedical ultrasound imaging.
    Zheng H; Mukdadi O; Shandas R
    Phys Med Biol; 2006 Feb; 51(3):557-73. PubMed ID: 16424581
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phase-dependent dual-frequency contrast imaging at sub-harmonic frequency.
    Shen CC; Cheng CH; Yeh CK
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Feb; 58(2):379-88. PubMed ID: 21342823
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultrasonic characterization of the nonlinear properties of contrast microbubbles.
    Shi WT; Forsberg F
    Ultrasound Med Biol; 2000 Jan; 26(1):93-104. PubMed ID: 10687797
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Harmonic reduction in capacitive micromachined ultrasonic transducers by gap feedback linearization.
    Satir S; Degertekin FL
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Jan; 59(1):50-9. PubMed ID: 22293735
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nonlinear, multiple-input modeling of cerebral autoregulation using Volterra Kernel estimation.
    Kouchakpour H; Allen R; Simpson DM
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():2375-8. PubMed ID: 21096582
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detection of reaching intention using EEG signals and nonlinear dynamic system identification.
    Mirzaee MS; Moghimi S
    Comput Methods Programs Biomed; 2019 Jul; 175():151-161. PubMed ID: 31104704
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Contrast improvement in sub- and ultraharmonic ultrasound contrast imaging by combining several hammerstein models.
    Sbeity F; Ménigot S; Charara J; Girault JM
    Int J Biomed Imaging; 2013; 2013():270523. PubMed ID: 24307890
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nonlinear dynamic modeling of spike train transformations for hippocampal-cortical prostheses.
    Song D; Chan RH; Marmarelis VZ; Hampson RE; Deadwyler SA; Berger TW
    IEEE Trans Biomed Eng; 2007 Jun; 54(6 Pt 1):1053-66. PubMed ID: 17554824
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Observing Bubble Cavitation by Back-Propagation of Acoustic Emission Signals.
    Koda R; Origasa T; Nakajima T; Yamakoshi Y
    IEEE Trans Ultrason Ferroelectr Freq Control; 2019 May; 66(5):823-833. PubMed ID: 30735990
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nonlinear modeling of neural population dynamics for hippocampal prostheses.
    Song D; Chan RH; Marmarelis VZ; Hampson RE; Deadwyler SA; Berger TW
    Neural Netw; 2009 Nov; 22(9):1340-51. PubMed ID: 19501484
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nonlinear modeling of causal interrelationships in neuronal ensembles.
    Zanos TP; Courellis SH; Berger TW; Hampson RE; Deadwyler SA; Marmarelis VZ
    IEEE Trans Neural Syst Rehabil Eng; 2008 Aug; 16(4):336-52. PubMed ID: 18701382
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of bubble shell nonlinearity on ultrasound nonlinear propagation through microbubble populations.
    Tang MX; Loughran J; Stride E; Zhang D; Eckersley RJ
    J Acoust Soc Am; 2011 Mar; 129(3):EL76-82. PubMed ID: 21428471
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Texas two-step: a framework for optimal multi-input single-output deconvolution.
    Neelamani R; Deffenbaugh M; Baraniuk RG
    IEEE Trans Image Process; 2007 Nov; 16(11):2752-65. PubMed ID: 17990752
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Methodology of Recurrent Laguerre-Volterra Network for Modeling Nonlinear Dynamic Systems.
    Geng K; Marmarelis VZ
    IEEE Trans Neural Netw Learn Syst; 2017 Sep; 28(9):2196-2208. PubMed ID: 27352401
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling Nonlinear Synaptic Dynamics: A Laguerre-Volterra Network Framework for Improved Computational Efficiency in Large Scale Simulations.
    Hu EY; Yu G; Song D; Jean-Marie Bouteiller C; Theodore Berger W
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():6129-6132. PubMed ID: 30441733
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The identification of nonlinear biological systems: Volterra kernel approaches.
    Korenberg MJ; Hunter IW
    Ann Biomed Eng; 1996; 24(4):250-68. PubMed ID: 8841729
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nonlinear modeling of the dynamic effects of infused insulin on glucose: comparison of compartmental with Volterra models.
    Mitsis GD; Markakis MG; Marmarelis VZ
    IEEE Trans Biomed Eng; 2009 Oct; 56(10):2347-58. PubMed ID: 19497805
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.