BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 23554841)

  • 1. Robust myocardial motion tracking for echocardiography: variational framework integrating local-to-global deformation.
    Ahn CY
    Comput Math Methods Med; 2013; 2013():974027. PubMed ID: 23554841
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Robust real-time myocardial border tracking for echocardiography: an information fusion approach.
    Comaniciu D; Zhou XS; Krishnan S
    IEEE Trans Med Imaging; 2004 Jul; 23(7):849-60. PubMed ID: 15250637
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analytic signal phase-based myocardial motion estimation in tagged MRI sequences by a bilinear model and motion compensation.
    Wang L; Basarab A; Girard PR; Croisille P; Clarysse P; Delachartre P
    Med Image Anal; 2015 Aug; 24(1):149-162. PubMed ID: 26176412
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of motion tracking in echocardiographic image sequences: influence of system geometry and point-spread function.
    Touil B; Basarab A; Delachartre P; Bernard O; Friboulet D
    Ultrasonics; 2010 Mar; 50(3):373-86. PubMed ID: 19837445
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improved segmental myocardial strain reproducibility using deformable registration algorithms compared with feature tracking cardiac MRI and speckle tracking echocardiography.
    Wang J; Li W; Sun J; Liu H; Kang Y; Yang D; Yu L; Greiser A; Zhou X; Han Y; Chen Y
    J Magn Reson Imaging; 2018 Aug; 48(2):404-414. PubMed ID: 29283466
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improving motion estimation by accounting for local image distortion.
    Behar V; Adam D; Lysyansky P; Friedman Z
    Ultrasonics; 2004 Oct; 43(1):57-65. PubMed ID: 15358529
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Segmentation and tracking in echocardiographic sequences: active contours guided by optical flow estimates.
    Mikić I; Krucinski S; Thomas JD
    IEEE Trans Med Imaging; 1998 Apr; 17(2):274-84. PubMed ID: 9688159
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A quantitative study of motion estimation methods on 4D cardiac gated SPECT reconstruction.
    Qi W; Yang Y; Niu X; King MA
    Med Phys; 2012 Aug; 39(8):5182-93. PubMed ID: 22894443
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A maximum likelihood approach to diffeomorphic speckle tracking for 3D strain estimation in echocardiography.
    Curiale AH; Vegas-Sánchez-Ferrero G; Bosch JG; Aja-Fernández S
    Med Image Anal; 2015 Aug; 24(1):90-105. PubMed ID: 26084033
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Global Tracking of Myocardial Motion in Ultrasound Sequence Images: A Feasibility Study.
    Wang YN; Liu XM; Song XF; Wang Q; Feng QJ; Chen WF
    Math Biosci Eng; 2019 Oct; 17(1):478-493. PubMed ID: 31731362
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Speckle tracking in intracardiac echocardiography for the assessment of myocardial deformation.
    Yue Y; Clark JW; Khoury DS
    IEEE Trans Biomed Eng; 2009 Feb; 56(2):416-25. PubMed ID: 19272903
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A momentum-based constraint on optical flow tracking of the endocardial surface.
    Po MJ; Lorsakul A; Laine AF
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():7191-4. PubMed ID: 22255997
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Shape-based tracking of left ventricular wall motion.
    McEachen JC; Duncan JS
    IEEE Trans Med Imaging; 1997 Jun; 16(3):270-83. PubMed ID: 9184889
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A new variational technique for combining affine registration and optical flow in echocardiography images.
    Tavakoli V; Nambakhsh MS; Sahba N; Makinian A
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():205-8. PubMed ID: 19162629
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Myocardial deformation imaging by two-dimensional speckle-tracking echocardiography for prediction of global and segmental functional changes after acute myocardial infarction: a comparison with late gadolinium enhancement cardiac magnetic resonance.
    Altiok E; Tiemann S; Becker M; Koos R; Zwicker C; Schroeder J; Kraemer N; Schoth F; Adam D; Friedman Z; Marx N; Hoffmann R
    J Am Soc Echocardiogr; 2014 Mar; 27(3):249-57. PubMed ID: 24368027
    [TBL] [Abstract][Full Text] [Related]  

  • 16. LV motion tracking from 3D echocardiography using textural and structural information.
    Myronenko A; Song X; Sahn DJ
    Med Image Comput Comput Assist Interv; 2007; 10(Pt 2):428-35. PubMed ID: 18044597
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Left ventricle wall motion quantification from echocardiographic images by non-rigid image registration.
    Shalbaf A; Behnam H; Alizade-Sani Z; Shojaifard M
    Int J Comput Assist Radiol Surg; 2012 Sep; 7(5):769-83. PubMed ID: 22847528
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Robust Optical Flow Estimation in Cardiac Ultrasound Images Using a Sparse Representation.
    Ouzir N; Basarab A; Lairez O; Tourneret JY
    IEEE Trans Med Imaging; 2019 Mar; 38(3):741-752. PubMed ID: 30235121
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Robust boundary detection and tracking of left ventricles on ultrasound images using active shape model and ant colony optimization.
    Zhang Y; Gao Y; Jiao J; Li X; Li S; Yang J
    Biomed Mater Eng; 2014; 24(6):2893-9. PubMed ID: 25226995
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-frame rate, full-view myocardial elastography with automated contour tracking in murine left ventricles in vivo.
    Luo J; Konofagou EE
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Jan; 55(1):240-8. PubMed ID: 18334330
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.