These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
171 related articles for article (PubMed ID: 23554859)
1. Structure-guided systems-level engineering of oxidation-prone methionine residues in catalytic domain of an alkaline α-amylase from Alkalimonas amylolytica for significant improvement of both oxidative stability and catalytic efficiency. Yang H; Liu L; Shin HD; Li J; Du G; Chen J PLoS One; 2013; 8(3):e57403. PubMed ID: 23554859 [TBL] [Abstract][Full Text] [Related]
2. Structure-based engineering of methionine residues in the catalytic cores of alkaline amylase from Alkalimonas amylolytica for improved oxidative stability. Yang H; Liu L; Wang M; Li J; Wang NS; Du G; Chen J Appl Environ Microbiol; 2012 Nov; 78(21):7519-26. PubMed ID: 22865059 [TBL] [Abstract][Full Text] [Related]
3. Structure-based replacement of methionine residues at the catalytic domains with serine significantly improves the oxidative stability of alkaline amylase from alkaliphilic Alkalimonas amylolytica. Yang H; Liu L; Li J; Du G; Chen J Biotechnol Prog; 2012; 28(5):1271-7. PubMed ID: 22887900 [TBL] [Abstract][Full Text] [Related]
4. In silico rational design and systems engineering of disulfide bridges in the catalytic domain of an alkaline α-amylase from Alkalimonas amylolytica to improve thermostability. Liu L; Deng Z; Yang H; Li J; Shin HD; Chen RR; Du G; Chen J Appl Environ Microbiol; 2014 Feb; 80(3):798-807. PubMed ID: 24212581 [TBL] [Abstract][Full Text] [Related]
5. Structure-based engineering of alkaline α-amylase from alkaliphilic Alkalimonas amylolytica for improved thermostability. Deng Z; Yang H; Li J; Shin HD; Du G; Liu L; Chen J Appl Microbiol Biotechnol; 2014 May; 98(9):3997-4007. PubMed ID: 24247992 [TBL] [Abstract][Full Text] [Related]
6. Fusion of an oligopeptide to the N terminus of an alkaline α-amylase from Alkalimonas amylolytica simultaneously improves the enzyme's catalytic efficiency, thermal stability, and resistance to oxidation. Yang H; Lu X; Liu L; Li J; Shin HD; Chen RR; Du G; Chen J Appl Environ Microbiol; 2013 May; 79(9):3049-58. PubMed ID: 23455344 [TBL] [Abstract][Full Text] [Related]
7. Structure-based rational design and introduction of arginines on the surface of an alkaline α-amylase from Alkalimonas amylolytica for improved thermostability. Deng Z; Yang H; Shin HD; Li J; Liu L Appl Microbiol Biotechnol; 2014 Nov; 98(21):8937-45. PubMed ID: 24816623 [TBL] [Abstract][Full Text] [Related]
8. Structure-based engineering of histidine residues in the catalytic domain of α-amylase from Bacillus subtilis for improved protein stability and catalytic efficiency under acidic conditions. Yang H; Liu L; Shin HD; Chen RR; Li J; Du G; Chen J J Biotechnol; 2013 Mar; 164(1):59-66. PubMed ID: 23262127 [TBL] [Abstract][Full Text] [Related]
9. Rational Engineering of a Cold-Adapted α-Amylase from the Antarctic Ciliate Euplotes focardii for Simultaneous Improvement of Thermostability and Catalytic Activity. Yang G; Yao H; Mozzicafreddo M; Ballarini P; Pucciarelli S; Miceli C Appl Environ Microbiol; 2017 Jul; 83(13):. PubMed ID: 28455329 [TBL] [Abstract][Full Text] [Related]
10. Gene cloning and characterization of a novel alpha-amylase from alkaliphilic Alkalimonas amylolytica. Wang N; Zhang Y; Wang Q; Liu J; Wang H; Xue Y; Ma Y Biotechnol J; 2006 Nov; 1(11):1258-65. PubMed ID: 17068753 [TBL] [Abstract][Full Text] [Related]
11. Engineering of the alpha-amylase from Geobacillus stearothermophilus US100 for detergent incorporation. Khemakhem B; Ali MB; Aghajari N; Juy M; Haser R; Bejar S Biotechnol Bioeng; 2009 Feb; 102(2):380-9. PubMed ID: 18951544 [TBL] [Abstract][Full Text] [Related]
12. Truncation of the unique N-terminal domain improved the thermos-stability and specific activity of alkaline α-amylase Amy703. Lu Z; Wang Q; Jiang S; Zhang G; Ma Y Sci Rep; 2016 Mar; 6():22465. PubMed ID: 26926401 [TBL] [Abstract][Full Text] [Related]
13. Comparative analysis of heterologous expression, biochemical characterization optimal production of an alkaline α-amylase from alkaliphilic Alkalimonas amylolytica in Escherichia coli and Pichia pastoris. Yang H; Liu L; Shin HD; Chen RR; Li J; Du G; Chen J Biotechnol Prog; 2013; 29(1):39-47. PubMed ID: 23125186 [TBL] [Abstract][Full Text] [Related]
14. Replacement of methionine 208 in a truncated Bacillus sp. TS-23 alpha-amylase with oxidation-resistant leucine enhances its resistance to hydrogen peroxide. Lin LL; Lo HF; Chiang WY; Hu HY; Hsu WH; Chang CT Curr Microbiol; 2003 Mar; 46(3):211-6. PubMed ID: 12567245 [TBL] [Abstract][Full Text] [Related]
15. Site-directed mutagenesis of methionine residues for improving the oxidative stability of α-amylase from Thermotoga maritima. Ozturk H; Ece S; Gundeger E; Evran S J Biosci Bioeng; 2013 Oct; 116(4):449-51. PubMed ID: 23702189 [TBL] [Abstract][Full Text] [Related]
16. Integrating terminal truncation and oligopeptide fusion for a novel protein engineering strategy to improve specific activity and catalytic efficiency: alkaline α-amylase as a case study. Yang H; Liu L; Shin HD; Chen RR; Li J; Du G; Chen J Appl Environ Microbiol; 2013 Oct; 79(20):6429-38. PubMed ID: 23956385 [TBL] [Abstract][Full Text] [Related]
17. Native to designed: microbial -amylases for industrial applications. Lim SJ; Oslan SN PeerJ; 2021; 9():e11315. PubMed ID: 34046253 [TBL] [Abstract][Full Text] [Related]
18. Improving the thermostability and acid resistance of Rhizopus oryzae α-amylase by using multiple sequence alignment based site-directed mutagenesis. Li S; Yang Q; Tang B Biotechnol Appl Biochem; 2020 Jul; 67(4):677-684. PubMed ID: 32133700 [TBL] [Abstract][Full Text] [Related]
19. A mutant alpha-amylase with only part of the catalytic domain and its structural implication. Ke T; Ma XD; Mao PH; Jin X; Chen SJ; Li Y; Ma LX; He GY Biotechnol Lett; 2007 Jan; 29(1):117-22. PubMed ID: 17091385 [TBL] [Abstract][Full Text] [Related]
20. Random mutagenesis of super Koji (Aspergillus oryzae): improvement in production and thermal stability of α-amylases for maltose syrup production. Aleem B; Rashid MH; Zeb N; Saqib A; Ihsan A; Iqbal M; Ali H BMC Microbiol; 2018 Nov; 18(1):200. PubMed ID: 30486793 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]