These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 23554931)

  • 1. Joint loads in marsupial ankles reflect habitual bipedalism versus quadrupedalism.
    Carlson KJ; Jashashvili T; Houghton K; Westaway MC; Patel BA
    PLoS One; 2013; 8(3):e58811. PubMed ID: 23554931
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Habitual use of the primate forelimb is reflected in the material properties of subchondral bone in the distal radius.
    Carlson KJ; Patel BA
    J Anat; 2006 Jun; 208(6):659-70. PubMed ID: 16761969
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bone density spatial patterns in the distal radius reflect habitual hand postures adopted by quadrupedal primates.
    Patel BA; Carlson KJ
    J Hum Evol; 2007 Feb; 52(2):130-41. PubMed ID: 17055031
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mediolateral reaction forces and forelimb anatomy in quadrupedal primates: implications for interpreting locomotor behavior in fossil primates.
    Schmitt D
    J Hum Evol; 2003 Jan; 44(1):47-58. PubMed ID: 12604303
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chimpanzee ankle and foot joint kinematics: Arboreal versus terrestrial locomotion.
    Holowka NB; O'Neill MC; Thompson NE; Demes B
    Am J Phys Anthropol; 2017 Sep; 164(1):131-147. PubMed ID: 28594068
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Forelimb preferences in quadrupedal marsupials and their implications for laterality evolution in mammals.
    Giljov A; Karenina K; Malashichev Y
    BMC Evol Biol; 2013 Mar; 13():61. PubMed ID: 23497116
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Apparent density of the primate calcaneo-cuboid joint and its association with locomotor mode, foot posture, and the "midtarsal break".
    Nowak MG; Carlson KJ; Patel BA
    Am J Phys Anthropol; 2010 Jun; 142(2):180-93. PubMed ID: 19918985
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The gaits of marsupials and the evolution of diagonal-sequence walking in primates.
    Cartmill M; Brown K; Atkinson C; Cartmill EA; Findley E; Gonzalez-Socoloske D; Hartstone-Rose A; Mueller J
    Am J Phys Anthropol; 2020 Feb; 171(2):182-197. PubMed ID: 31762016
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Locomotion, postures, substrate use, and foot grasping in the marsupial feathertail glider Acrobates pygmaeus (Diprotodontia: Acrobatidae): Insights into early euprimate evolution.
    Youlatos D; Moussa D; Karantanis NE; Rychlik L
    J Hum Evol; 2018 Oct; 123():148-159. PubMed ID: 30097183
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Is primate-like quadrupedalism necessary for fine-branch locomotion? A test using sugar gliders (Petaurus breviceps).
    Shapiro LJ; Young JW
    J Hum Evol; 2010 Apr; 58(4):309-19. PubMed ID: 20153016
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The joints of the evolving foot. Part I. The ankle joint.
    Lewis OJ
    J Anat; 1980 May; 130(Pt 3):527-43. PubMed ID: 7410197
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gait mechanics of lemurid primates on terrestrial and arboreal substrates.
    Franz TM; Demes B; Carlson KJ
    J Hum Evol; 2005 Feb; 48(2):199-217. PubMed ID: 15701531
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Body size and the small branch niche: using marsupial ontogeny to model primate locomotor evolution.
    Shapiro LJ; Young JW; VandeBerg JL
    J Hum Evol; 2014 Mar; 68():14-31. PubMed ID: 24508352
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vivo strains in the femur of the Virginia opossum (Didelphis virginiana) during terrestrial locomotion: testing hypotheses of evolutionary shifts in mammalian bone loading and design.
    Butcher MT; White BJ; Hudzik NB; Gosnell WC; Parrish JH; Blob RW
    J Exp Biol; 2011 Aug; 214(Pt 15):2631-40. PubMed ID: 21753057
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Insights into the evolution of human bipedalism from experimental studies of humans and other primates.
    Schmitt D
    J Exp Biol; 2003 May; 206(Pt 9):1437-48. PubMed ID: 12654883
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative three-dimensional structure of the trabecular bone in the talus of primates and its relationship to ankle joint loads generated during locomotion.
    Hébert D; Lebrun R; Marivaux L
    Anat Rec (Hoboken); 2012 Dec; 295(12):2069-88. PubMed ID: 23109268
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A universal scaling relationship between body mass and proximal limb bone dimensions in quadrupedal terrestrial tetrapods.
    Campione NE; Evans DC
    BMC Biol; 2012 Jul; 10():60. PubMed ID: 22781121
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hip extensor EMG and forelimb/hind limb weight support asymmetry in primate quadrupeds.
    Larson SG; Stern JT
    Am J Phys Anthropol; 2009 Mar; 138(3):343-55. PubMed ID: 18924163
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Foramen magnum position in bipedal mammals.
    Russo GA; Kirk EC
    J Hum Evol; 2013 Nov; 65(5):656-70. PubMed ID: 24055116
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Unifying principles in terrestrial locomotion: do hopping Australian marsupials fit in?
    Bennett MB
    Physiol Biochem Zool; 2000; 73(6):726-35. PubMed ID: 11121346
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.