These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
213 related articles for article (PubMed ID: 23555082)
21. TopHat-Fusion: an algorithm for discovery of novel fusion transcripts. Kim D; Salzberg SL Genome Biol; 2011 Aug; 12(8):R72. PubMed ID: 21835007 [TBL] [Abstract][Full Text] [Related]
22. FusionFinder: a software tool to identify expressed gene fusion candidates from RNA-Seq data. Francis RW; Thompson-Wicking K; Carter KW; Anderson D; Kees UR; Beesley AH PLoS One; 2012; 7(6):e39987. PubMed ID: 22761941 [TBL] [Abstract][Full Text] [Related]
23. MapSplice: accurate mapping of RNA-seq reads for splice junction discovery. Wang K; Singh D; Zeng Z; Coleman SJ; Huang Y; Savich GL; He X; Mieczkowski P; Grimm SA; Perou CM; MacLeod JN; Chiang DY; Prins JF; Liu J Nucleic Acids Res; 2010 Oct; 38(18):e178. PubMed ID: 20802226 [TBL] [Abstract][Full Text] [Related]
24. deFuse: an algorithm for gene fusion discovery in tumor RNA-Seq data. McPherson A; Hormozdiari F; Zayed A; Giuliany R; Ha G; Sun MG; Griffith M; Heravi Moussavi A; Senz J; Melnyk N; Pacheco M; Marra MA; Hirst M; Nielsen TO; Sahinalp SC; Huntsman D; Shah SP PLoS Comput Biol; 2011 May; 7(5):e1001138. PubMed ID: 21625565 [TBL] [Abstract][Full Text] [Related]
25. Case Study: Systematic Detection and Prioritization of Gene Fusions in Cancer by RNA-Seq: A DIY Toolkit. Vats P; Chinnaiyan AM; Kumar-Sinha C Methods Mol Biol; 2020; 2079():69-79. PubMed ID: 31728962 [TBL] [Abstract][Full Text] [Related]
26. Unifying the genomics-based classes of cancer fusion gene partners: large cancer fusion genes are evolutionarily conserved. Pava LM; Morton DT; Chen R; Blanck G Cancer Genomics Proteomics; 2012 Nov; 9(6):389-95. PubMed ID: 23162078 [TBL] [Abstract][Full Text] [Related]
27. ArtiFuse-computational validation of fusion gene detection tools without relying on simulated reads. Sorn P; Holtsträter C; Löwer M; Sahin U; Weber D Bioinformatics; 2020 Jan; 36(2):373-379. PubMed ID: 31373612 [TBL] [Abstract][Full Text] [Related]
28. Improved detection of gene fusions by applying statistical methods reveals oncogenic RNA cancer drivers. Dehghannasiri R; Freeman DE; Jordanski M; Hsieh GL; Damljanovic A; Lehnert E; Salzman J Proc Natl Acad Sci U S A; 2019 Jul; 116(31):15524-15533. PubMed ID: 31308241 [TBL] [Abstract][Full Text] [Related]
29. Sequential combination of karyotyping and RNA-sequencing in the search for cancer-specific fusion genes. Panagopoulos I; Thorsen J; Gorunova L; Micci F; Heim S Int J Biochem Cell Biol; 2014 Aug; 53():462-5. PubMed ID: 24863361 [TBL] [Abstract][Full Text] [Related]
30. Molecular genetic characterization of the EWS/CHN and RBP56/CHN fusion genes in extraskeletal myxoid chondrosarcoma. Panagopoulos I; Mertens F; Isaksson M; Domanski HA; Brosjö O; Heim S; Bjerkehagen B; Sciot R; Dal Cin P; Fletcher JA; Fletcher CD; Mandahl N Genes Chromosomes Cancer; 2002 Dec; 35(4):340-52. PubMed ID: 12378528 [TBL] [Abstract][Full Text] [Related]
31. Discovering and understanding oncogenic gene fusions through data intensive computational approaches. Latysheva NS; Babu MM Nucleic Acids Res; 2016 Jun; 44(10):4487-503. PubMed ID: 27105842 [TBL] [Abstract][Full Text] [Related]
32. GeneScissors: a comprehensive approach to detecting and correcting spurious transcriptome inference owing to RNA-seq reads misalignment. Zhang Z; Huang S; Wang J; Zhang X; Pardo Manuel de Villena F; McMillan L; Wang W Bioinformatics; 2013 Jul; 29(13):i291-9. PubMed ID: 23812996 [TBL] [Abstract][Full Text] [Related]
33. Massive NGS data analysis reveals hundreds of potential novel gene fusions in human cell lines. Gioiosa S; Bolis M; Flati T; Massini A; Garattini E; Chillemi G; Fratelli M; Castrignanò T Gigascience; 2018 Oct; 7(10):. PubMed ID: 29860514 [TBL] [Abstract][Full Text] [Related]
34. SimFuse: A Novel Fusion Simulator for RNA Sequencing (RNA-Seq) Data. Tan Y; Tambouret Y; Monti S Biomed Res Int; 2015; 2015():780519. PubMed ID: 26839886 [TBL] [Abstract][Full Text] [Related]
35. Identification of novel fusion transcripts in multiple myeloma. Lin M; Lee PL; Chiu L; Chua C; Ban KHK; Lin AHF; Chan ZL; Chung TH; Yan B; Chng WJ J Clin Pathol; 2018 Aug; 71(8):708-712. PubMed ID: 29453220 [TBL] [Abstract][Full Text] [Related]
36. Recurrent fusion transcripts detected by whole-transcriptome sequencing of 120 primary breast cancer samples. Kim J; Kim S; Ko S; In YH; Moon HG; Ahn SK; Kim MK; Lee M; Hwang JH; Ju YS; Kim JI; Noh DY; Kim S; Park JH; Rhee H; Kim S; Han W Genes Chromosomes Cancer; 2015 Nov; 54(11):681-91. PubMed ID: 26227178 [TBL] [Abstract][Full Text] [Related]
37. FUSIM: a software tool for simulating fusion transcripts. Bruno AE; Miecznikowski JC; Qin M; Wang J; Liu S BMC Bioinformatics; 2013 Jan; 14():13. PubMed ID: 23323884 [TBL] [Abstract][Full Text] [Related]
38. Read-Split-Run: an improved bioinformatics pipeline for identification of genome-wide non-canonical spliced regions using RNA-Seq data. Bai Y; Kinne J; Donham B; Jiang F; Ding L; Hassler JR; Kaufman RJ BMC Genomics; 2016 Aug; 17 Suppl 7(Suppl 7):503. PubMed ID: 27556805 [TBL] [Abstract][Full Text] [Related]