BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 23555304)

  • 1. Dynamic circadian protein-protein interaction networks predict temporal organization of cellular functions.
    Wallach T; Schellenberg K; Maier B; Kalathur RK; Porras P; Wanker EE; Futschik ME; Kramer A
    PLoS Genet; 2013 Mar; 9(3):e1003398. PubMed ID: 23555304
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protein phosphatase 4 controls circadian clock dynamics by modulating CLOCK/BMAL1 activity.
    Klemz S; Wallach T; Korge S; Rosing M; Klemz R; Maier B; Fiorenza NC; Kaymak I; Fritzsche AK; Herzog ED; Stanewsky R; Kramer A
    Genes Dev; 2021 Aug; 35(15-16):1161-1174. PubMed ID: 34301769
    [TBL] [Abstract][Full Text] [Related]  

  • 3. BMAL1 dephosphorylation determines the pace of the circadian clock.
    Schibler U
    Genes Dev; 2021 Aug; 35(15-16):1076-1078. PubMed ID: 34341001
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heterogeneous expression of the core circadian clock proteins among neuronal cell types in mouse retina.
    Liu X; Zhang Z; Ribelayga CP
    PLoS One; 2012; 7(11):e50602. PubMed ID: 23189207
    [TBL] [Abstract][Full Text] [Related]  

  • 5. PI3K regulates BMAL1/CLOCK-mediated circadian transcription from the Dbp promoter.
    Morishita Y; Miura D; Kida S
    Biosci Biotechnol Biochem; 2016 Jun; 80(6):1131-40. PubMed ID: 27022680
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genome-wide and phase-specific DNA-binding rhythms of BMAL1 control circadian output functions in mouse liver.
    Rey G; Cesbron F; Rougemont J; Reinke H; Brunner M; Naef F
    PLoS Biol; 2011 Feb; 9(2):e1000595. PubMed ID: 21364973
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Circadian regulator BMAL1::CLOCK promotes cell proliferation in hepatocellular carcinoma by controlling apoptosis and cell cycle.
    Qu M; Zhang G; Qu H; Vu A; Wu R; Tsukamoto H; Jia Z; Huang W; Lenz HJ; Rich JN; Kay SA
    Proc Natl Acad Sci U S A; 2023 Jan; 120(2):e2214829120. PubMed ID: 36595671
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular Cogs: Interplay between Circadian Clock and Cell Cycle.
    Gaucher J; Montellier E; Sassone-Corsi P
    Trends Cell Biol; 2018 May; 28(5):368-379. PubMed ID: 29471986
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Circadian clocks: from stem cells to tissue homeostasis and regeneration.
    Dierickx P; Van Laake LW; Geijsen N
    EMBO Rep; 2018 Jan; 19(1):18-28. PubMed ID: 29258993
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transcriptional regulatory logic of the diurnal cycle in the mouse liver.
    Sobel JA; Krier I; Andersin T; Raghav S; Canella D; Gilardi F; Kalantzi AS; Rey G; Weger B; Gachon F; Dal Peraro M; Hernandez N; Schibler U; Deplancke B; Naef F;
    PLoS Biol; 2017 Apr; 15(4):e2001069. PubMed ID: 28414715
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fbxl11 Is a Novel Negative Element of the Mammalian Circadian Clock.
    Reischl S; Kramer A
    J Biol Rhythms; 2015 Aug; 30(4):291-301. PubMed ID: 26037310
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Circadian modification network of a core clock driver BMAL1 to harmonize physiology from brain to peripheral tissues.
    Tamaru T; Takamatsu K
    Neurochem Int; 2018 Oct; 119():11-16. PubMed ID: 29305918
    [TBL] [Abstract][Full Text] [Related]  

  • 13. O-GlcNAc signaling entrains the circadian clock by inhibiting BMAL1/CLOCK ubiquitination.
    Li MD; Ruan HB; Hughes ME; Lee JS; Singh JP; Jones SP; Nitabach MN; Yang X
    Cell Metab; 2013 Feb; 17(2):303-10. PubMed ID: 23395176
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CLOCK Acetylates ASS1 to Drive Circadian Rhythm of Ureagenesis.
    Lin R; Mo Y; Zha H; Qu Z; Xie P; Zhu ZJ; Xu Y; Xiong Y; Guan KL
    Mol Cell; 2017 Oct; 68(1):198-209.e6. PubMed ID: 28985504
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantification of interactions among circadian clock proteins via surface plasmon resonance.
    Kepsutlu B; Kizilel R; Kizilel S
    J Mol Recognit; 2014 Jul; 27(7):458-69. PubMed ID: 24895278
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Susceptibility rhythm to bacterial endotoxin in myeloid clock-knockout mice.
    Lang V; Ferencik S; Ananthasubramaniam B; Kramer A; Maier B
    Elife; 2021 Oct; 10():. PubMed ID: 34661529
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coactivation of the CLOCK-BMAL1 complex by CBP mediates resetting of the circadian clock.
    Lee Y; Lee J; Kwon I; Nakajima Y; Ohmiya Y; Son GH; Lee KH; Kim K
    J Cell Sci; 2010 Oct; 123(Pt 20):3547-57. PubMed ID: 20930143
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modulation of glucocorticoid receptor induction properties by core circadian clock proteins.
    Han DH; Lee YJ; Kim K; Kim CJ; Cho S
    Mol Cell Endocrinol; 2014 Mar; 383(1-2):170-80. PubMed ID: 24378737
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Asymmetric expression level of clock genes in left vs. right nasal mucosa in humans with and without allergies and in rats: Circadian characteristics and possible contribution to nasal cycle.
    Kim HK; Kim HJ; Kim JH; Kim TH; Lee SH
    PLoS One; 2018; 13(3):e0194018. PubMed ID: 29534090
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Increased sensitivity of the circadian system to temporal changes in the feeding regime of spontaneously hypertensive rats - a potential role for Bmal2 in the liver.
    Polidarová L; Sládek M; Nováková M; Parkanová D; Sumová A
    PLoS One; 2013; 8(9):e75690. PubMed ID: 24086613
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.