BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 23555702)

  • 1. Boron stress responsive microRNAs and their targets in barley.
    Ozhuner E; Eldem V; Ipek A; Okay S; Sakcali S; Zhang B; Boke H; Unver T
    PLoS One; 2013; 8(3):e59543. PubMed ID: 23555702
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differential expression of microRNAs and potential targets under drought stress in barley.
    Ferdous J; Sanchez-Ferrero JC; Langridge P; Milne L; Chowdhury J; Brien C; Tricker PJ
    Plant Cell Environ; 2017 Jan; 40(1):11-24. PubMed ID: 27155357
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of barley miRNAs upon dehydration stress correlated with target gene expression.
    Kantar M; Unver T; Budak H
    Funct Integr Genomics; 2010 Nov; 10(4):493-507. PubMed ID: 20676715
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Global Identification of MicroRNAs and Their Targets in Barley under Salinity Stress.
    Deng P; Wang L; Cui L; Feng K; Liu F; Du X; Tong W; Nie X; Ji W; Weining S
    PLoS One; 2015; 10(9):e0137990. PubMed ID: 26372557
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of wild soybean miRNAs and their target genes responsive to aluminum stress.
    Zeng QY; Yang CY; Ma QB; Li XP; Dong WW; Nian H
    BMC Plant Biol; 2012 Oct; 12():182. PubMed ID: 23040172
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of reference genes for quantitative expression analysis of microRNAs and mRNAs in barley under various stress conditions.
    Ferdous J; Li Y; Reid N; Langridge P; Shi BJ; Tricker PJ
    PLoS One; 2015; 10(3):e0118503. PubMed ID: 25793505
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Barley long non-coding RNAs (lncRNA) responsive to excess boron.
    Unver T; Tombuloglu H
    Genomics; 2020 Mar; 112(2):1947-1955. PubMed ID: 31730798
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of microRNAs and their targets in wild barley (Hordeum vulgare subsp. spontaneum) using deep sequencing.
    Deng P; Bian J; Yue H; Feng K; Wang M; Du X; Weining S; Nie X
    Genome; 2016 May; 59(5):339-48. PubMed ID: 27100818
    [TBL] [Abstract][Full Text] [Related]  

  • 9. microRNAs participate in gene expression regulation and phytohormone cross-talk in barley embryo during seed development and germination.
    Bai B; Shi B; Hou N; Cao Y; Meng Y; Bian H; Zhu M; Han N
    BMC Plant Biol; 2017 Sep; 17(1):150. PubMed ID: 28877679
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A computational-based update on microRNAs and their targets in barley (Hordeum vulgare L.).
    Colaiacovo M; Subacchi A; Bagnaresi P; Lamontanara A; Cattivelli L; Faccioli P
    BMC Genomics; 2010 Oct; 11():595. PubMed ID: 20969764
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MicroRNAs expression patterns in the response of poplar woody root to bending stress.
    Rossi M; Trupiano D; Tamburro M; Ripabelli G; Montagnoli A; Chiatante D; Scippa GS
    Planta; 2015 Jul; 242(1):339-51. PubMed ID: 25963516
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of microRNAs in response to aluminum stress in the roots of Tibetan wild barley and cultivated barley.
    Wu L; Yu J; Shen Q; Huang L; Wu D; Zhang G
    BMC Genomics; 2018 Jul; 19(1):560. PubMed ID: 30064381
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genome-wide identification and characterization of cadmium-responsive microRNAs and their target genes in radish (Raphanus sativus L.) roots.
    Xu L; Wang Y; Zhai L; Xu Y; Wang L; Zhu X; Gong Y; Yu R; Limera C; Liu L
    J Exp Bot; 2013 Nov; 64(14):4271-87. PubMed ID: 24014874
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Drought stress and re-watering affect the abundance of TIP aquaporin transcripts in barley.
    Kurowska MM; Wiecha K; Gajek K; Szarejko I
    PLoS One; 2019; 14(12):e0226423. PubMed ID: 31846477
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transcriptionally and post-transcriptionally regulated microRNAs in heat stress response in barley.
    Kruszka K; Pacak A; Swida-Barteczka A; Nuc P; Alaba S; Wroblewska Z; Karlowski W; Jarmolowski A; Szweykowska-Kulinska Z
    J Exp Bot; 2014 Nov; 65(20):6123-35. PubMed ID: 25183744
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transcriptome-wide identification of R2R3-MYB transcription factors in barley with their boron responsive expression analysis.
    Tombuloglu H; Kekec G; Sakcali MS; Unver T
    Mol Genet Genomics; 2013 Apr; 288(3-4):141-55. PubMed ID: 23539153
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-throughput transcriptome analysis of barley (Hordeum vulgare) exposed to excessive boron.
    Tombuloglu G; Tombuloglu H; Sakcali MS; Unver T
    Gene; 2015 Feb; 557(1):71-81. PubMed ID: 25498907
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Functional Network of Novel Barley MicroRNAs and Their Targets in Response to Drought.
    Smoczynska A; Pacak AM; Nuc P; Swida-Barteczka A; Kruszka K; Karlowski WM; Jarmolowski A; Szweykowska-Kulinska Z
    Genes (Basel); 2020 Apr; 11(5):. PubMed ID: 32365647
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adaptation Strategies of Halophytic Barley
    Isayenkov S; Hilo A; Rizzo P; Tandron Moya YA; Rolletschek H; Borisjuk L; Radchuk V
    Int J Mol Sci; 2020 Nov; 21(23):. PubMed ID: 33260985
    [TBL] [Abstract][Full Text] [Related]  

  • 20. miR393-Mediated Auxin Signaling Regulation is Involved in Root Elongation Inhibition in Response to Toxic Aluminum Stress in Barley.
    Bai B; Bian H; Zeng Z; Hou N; Shi B; Wang J; Zhu M; Han N
    Plant Cell Physiol; 2017 Mar; 58(3):426-439. PubMed ID: 28064248
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.