BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 23555733)

  • 1. Weight-loss induced changes in physical activity and activity energy expenditure in overweight and obese subjects before and after energy restriction.
    Bonomi AG; Soenen S; Goris AH; Westerterp KR
    PLoS One; 2013; 8(3):e59641. PubMed ID: 23555733
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Weight loss-induced reduction in physical activity recovers during weight maintenance.
    Camps SG; Verhoef SP; Westerterp KR
    Am J Clin Nutr; 2013 Oct; 98(4):917-23. PubMed ID: 23985804
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exercise Training and Energy Expenditure following Weight Loss.
    Hunter GR; Fisher G; Neumeier WH; Carter SJ; Plaisance EP
    Med Sci Sports Exerc; 2015 Sep; 47(9):1950-7. PubMed ID: 25606816
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Validating measures of free-living physical activity in overweight and obese subjects using an accelerometer.
    Valenti G; Camps SG; Verhoef SP; Bonomi AG; Westerterp KR
    Int J Obes (Lond); 2014 Jul; 38(7):1011-4. PubMed ID: 24166066
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Leptin and energy restriction induced adaptation in energy expenditure.
    Camps SG; Verhoef SP; Westerterp KR
    Metabolism; 2015 Oct; 64(10):1284-90. PubMed ID: 26169472
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Measuring free-living energy expenditure and physical activity with triaxial accelerometry.
    Plasqui G; Joosen AM; Kester AD; Goris AH; Westerterp KR
    Obes Res; 2005 Aug; 13(8):1363-9. PubMed ID: 16129718
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Estimation of free-living energy expenditure using a novel activity monitor designed to minimize obtrusiveness.
    Bonomi AG; Plasqui G; Goris AH; Westerterp KR
    Obesity (Silver Spring); 2010 Sep; 18(9):1845-51. PubMed ID: 20186133
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of physical activity on weight loss, energy expenditure, and energy intake during diet induced weight loss.
    DeLany JP; Kelley DE; Hames KC; Jakicic JM; Goodpaster BH
    Obesity (Silver Spring); 2014 Feb; 22(2):363-70. PubMed ID: 23804562
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The energy cost of walking before and after significant weight loss.
    Foster GD; Wadden TA; Kendrick ZV; Letizia KA; Lander DP; Conill AM
    Med Sci Sports Exerc; 1995 Jun; 27(6):888-94. PubMed ID: 7658951
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High energy expenditure masks low physical activity in obesity.
    DeLany JP; Kelley DE; Hames KC; Jakicic JM; Goodpaster BH
    Int J Obes (Lond); 2013 Jul; 37(7):1006-11. PubMed ID: 23090575
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Estimating activity-related energy expenditure under sedentary conditions using a tri-axial seismic accelerometer.
    van Hees VT; van Lummel RC; Westerterp KR
    Obesity (Silver Spring); 2009 Jun; 17(6):1287-92. PubMed ID: 19282829
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Energy expenditure in overweight and obese adults in affluent societies: an analysis of 319 doubly-labelled water measurements.
    Prentice AM; Black AE; Coward WA; Cole TJ
    Eur J Clin Nutr; 1996 Feb; 50(2):93-7. PubMed ID: 8641251
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of calorie restriction on the free-living physical activity levels of nonobese humans: results of three randomized trials.
    Martin CK; Das SK; Lindblad L; Racette SB; McCrory MA; Weiss EP; Delany JP; Kraus WE;
    J Appl Physiol (1985); 2011 Apr; 110(4):956-63. PubMed ID: 21292847
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of the ability of three physical activity monitors to predict weight change and estimate energy expenditure.
    Correa JB; Apolzan JW; Shepard DN; Heil DP; Rood JC; Martin CK
    Appl Physiol Nutr Metab; 2016 Jul; 41(7):758-66. PubMed ID: 27270210
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolic and behavioral compensations in response to caloric restriction: implications for the maintenance of weight loss.
    Redman LM; Heilbronn LK; Martin CK; de Jonge L; Williamson DA; Delany JP; Ravussin E;
    PLoS One; 2009; 4(2):e4377. PubMed ID: 19198647
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of calorie restriction on resting metabolic rate and spontaneous physical activity.
    Martin CK; Heilbronn LK; de Jonge L; DeLany JP; Volaufova J; Anton SD; Redman LM; Smith SR; Ravussin E
    Obesity (Silver Spring); 2007 Dec; 15(12):2964-73. PubMed ID: 18198305
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Validity of combining heart rate and uniaxial acceleration to measure free-living physical activity energy expenditure in young men.
    Villars C; Bergouignan A; Dugas J; Antoun E; Schoeller DA; Roth H; Maingon AC; Lefai E; Blanc S; Simon C
    J Appl Physiol (1985); 2012 Dec; 113(11):1763-71. PubMed ID: 23019315
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Physical activity in free-living, overweight white and black women: divergent responses by race to diet-induced weight loss.
    Weinsier RL; Hunter GR; Schutz Y; Zuckerman PA; Darnell BE
    Am J Clin Nutr; 2002 Oct; 76(4):736-42. PubMed ID: 12324285
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Changes in leptin and peptide YY do not explain the greater-than-predicted decreases in resting energy expenditure after weight loss.
    McNeil J; Schwartz A; Rabasa-Lhoret R; Lavoie JM; Brochu M; Doucet É
    J Clin Endocrinol Metab; 2015 Mar; 100(3):E443-52. PubMed ID: 25494860
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improving assessment of daily energy expenditure by identifying types of physical activity with a single accelerometer.
    Bonomi AG; Plasqui G; Goris AH; Westerterp KR
    J Appl Physiol (1985); 2009 Sep; 107(3):655-61. PubMed ID: 19556460
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.