These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 23555839)

  • 1. Estimation of quasi-stiffness and propulsive work of the human ankle in the stance phase of walking.
    Shamaei K; Sawicki GS; Dollar AM
    PLoS One; 2013; 8(3):e59935. PubMed ID: 23555839
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Estimation of quasi-stiffness of the human knee in the stance phase of walking.
    Shamaei K; Sawicki GS; Dollar AM
    PLoS One; 2013; 8(3):e59993. PubMed ID: 23533662
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Estimation of quasi-stiffness of the human hip in the stance phase of walking.
    Shamaei K; Sawicki GS; Dollar AM
    PLoS One; 2013; 8(12):e81841. PubMed ID: 24349136
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of Existing Methods for Characterizing Bi-Linear Natural Ankle Quasi-Stiffness.
    Nigro L; Arch ES
    J Biomech Eng; 2022 Nov; 144(11):. PubMed ID: 35698872
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative analysis of human ankle characteristics at different gait phases and speeds for utilizing in ankle-foot prosthetic design.
    Safaeepour Z; Esteki A; Ghomshe FT; Abu Osman NA
    Biomed Eng Online; 2014 Feb; 13(1):19. PubMed ID: 24568175
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of simulated reduced gravity and walking speed on ankle, knee, and hip quasi-stiffness in overground walking.
    MacLean MK; Ferris DP
    PLoS One; 2022; 17(8):e0271927. PubMed ID: 35944021
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamic Flexion Stiffness of Foot Joints During Walking.
    Sanchis-Sales E; Sancho-Bru JL; Roda-Sales A; Pascual-Huerta J
    J Am Podiatr Med Assoc; 2016; 106(1):37-46. PubMed ID: 26895359
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Contributions to the understanding of gait control.
    Simonsen EB
    Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of a mechatronic platform and validation of methods for estimating ankle stiffness during the stance phase of walking.
    Rouse EJ; Hargrove LJ; Perreault EJ; Peshkin MA; Kuiken TA
    J Biomech Eng; 2013 Aug; 135(8):81009. PubMed ID: 23719922
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On the mechanics of the ankle in the stance phase of the gait.
    Shamaei K; Cenciarini M; Dollar AM
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():8135-40. PubMed ID: 22256230
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Leg joint function during walking acceleration and deceleration.
    Qiao M; Jindrich DL
    J Biomech; 2016 Jan; 49(1):66-72. PubMed ID: 26686397
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of sex and walking speed on the dynamic stiffness of lower limb joints.
    Santos TRT; Araújo VL; Khuu A; Lee S; Lewis CL; Souza TR; Holt KG; Fonseca ST
    J Biomech; 2021 Dec; 129():110803. PubMed ID: 34688064
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ankle stiffness modulation during different gait speeds in individuals post-stroke.
    Hinton EH; Likens A; Hsiao HY; Binder-Markey BI; Binder-Macleod SA; Knarr BA
    Clin Biomech (Bristol, Avon); 2022 Oct; 99():105761. PubMed ID: 36099707
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modulation of lower extremity joint stiffness, work and power at different walking and running speeds.
    Jin L; Hahn ME
    Hum Mov Sci; 2018 Apr; 58():1-9. PubMed ID: 29331489
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impact of elastic ankle exoskeleton stiffness on neuromechanics and energetics of human walking across multiple speeds.
    Nuckols RW; Sawicki GS
    J Neuroeng Rehabil; 2020 Jun; 17(1):75. PubMed ID: 32539840
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biomechanical effects of augmented ankle power output during human walking.
    Fickey SN; Browne MG; Franz JR
    J Exp Biol; 2018 Nov; 221(Pt 22):. PubMed ID: 30266784
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of age, speed, and step length on lower extremity net joint moments and powers during walking.
    Buddhadev HH; Smiley AL; Martin PE
    Hum Mov Sci; 2020 Jun; 71():102611. PubMed ID: 32452428
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of a powered ankle-foot prosthesis on kinetic loading of the unaffected leg during level-ground walking.
    Grabowski AM; D'Andrea S
    J Neuroeng Rehabil; 2013 Jun; 10():49. PubMed ID: 23758860
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanics of walking and running up and downhill: A joint-level perspective to guide design of lower-limb exoskeletons.
    Nuckols RW; Takahashi KZ; Farris DJ; Mizrachi S; Riemer R; Sawicki GS
    PLoS One; 2020; 15(8):e0231996. PubMed ID: 32857774
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The relative contribution of ankle moment and trailing limb angle to propulsive force during gait.
    Hsiao H; Knarr BA; Higginson JS; Binder-Macleod SA
    Hum Mov Sci; 2015 Feb; 39():212-21. PubMed ID: 25498289
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.