These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 23555852)

  • 1. Spatiotemporal dynamics of high-gamma activities during a 3-stimulus visual oddball task.
    Akimoto Y; Kanno A; Kambara T; Nozawa T; Sugiura M; Okumura E; Kawashima R
    PLoS One; 2013; 8(3):e59969. PubMed ID: 23555852
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Visual attention circuitry in schizophrenia investigated with oddball event-related functional magnetic resonance imaging.
    Gur RE; Turetsky BI; Loughead J; Snyder W; Kohler C; Elliott M; Pratiwadi R; Ragland JD; Bilker WB; Siegel SJ; Kanes SJ; Arnold SE; Gur RC
    Am J Psychiatry; 2007 Mar; 164(3):442-9. PubMed ID: 17329469
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neuroanatomical dissociation between bottom-up and top-down processes of visuospatial selective attention.
    Hahn B; Ross TJ; Stein EA
    Neuroimage; 2006 Aug; 32(2):842-53. PubMed ID: 16757180
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sources of top-down control in visual search.
    Weidner R; Krummenacher J; Reimann B; Müller HJ; Fink GR
    J Cogn Neurosci; 2009 Nov; 21(11):2100-13. PubMed ID: 19199412
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Causal Evidence for the Role of Neuronal Oscillations in Top-Down and Bottom-Up Attention.
    Riddle J; Hwang K; Cellier D; Dhanani S; D'Esposito M
    J Cogn Neurosci; 2019 May; 31(5):768-779. PubMed ID: 30726180
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Attentional control during the transient updating of cue information.
    Pessoa L; Rossi A; Japee S; Desimone R; Ungerleider LG
    Brain Res; 2009 Jan; 1247():149-58. PubMed ID: 18992228
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pre-stimulus activity predicts the winner of top-down vs. bottom-up attentional selection.
    Mazaheri A; DiQuattro NE; Bengson J; Geng JJ
    PLoS One; 2011 Feb; 6(2):e16243. PubMed ID: 21386896
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Probing the Neural Mechanisms for Distractor Filtering and Their History-Contingent Modulation by Means of TMS.
    Lega C; Ferrante O; Marini F; Santandrea E; Cattaneo L; Chelazzi L
    J Neurosci; 2019 Sep; 39(38):7591-7603. PubMed ID: 31387915
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Brain structures involved in visual search in the presence and absence of color singletons.
    Talsma D; Coe B; Munoz DP; Theeuwes J
    J Cogn Neurosci; 2010 Apr; 22(4):761-74. PubMed ID: 19309291
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of the insula in top-down processing: an intracranial EEG study using a visual oddball detection paradigm.
    Citherlet D; Boucher O; Tremblay J; Robert M; Gallagher A; Bouthillier A; Lepore F; Nguyen DK
    Brain Struct Funct; 2019 Jul; 224(6):2045-2059. PubMed ID: 31129871
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anterior intraparietal sulcus is sensitive to bottom-up attention driven by stimulus salience.
    Geng JJ; Mangun GR
    J Cogn Neurosci; 2009 Aug; 21(8):1584-601. PubMed ID: 18752405
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The neural correlates of attention orienting in visuospatial working memory for detecting feature and conjunction changes.
    Yeh YY; Kuo BC; Liu HL
    Brain Res; 2007 Jan; 1130(1):146-57. PubMed ID: 17173876
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cerebral correlates of alerting, orienting and reorienting of visuospatial attention: an event-related fMRI study.
    Thiel CM; Zilles K; Fink GR
    Neuroimage; 2004 Jan; 21(1):318-28. PubMed ID: 14741670
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional connectivity between ventral and dorsal frontoparietal networks underlies stimulus-driven and working memory-driven sources of visual distraction.
    Greene CM; Soto D
    Neuroimage; 2014 Jan; 84():290-8. PubMed ID: 24004695
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An event-related functional magnetic resonance imaging study of voluntary and stimulus-driven orienting of attention.
    Kincade JM; Abrams RA; Astafiev SV; Shulman GL; Corbetta M
    J Neurosci; 2005 May; 25(18):4593-604. PubMed ID: 15872107
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Concurrent TMS-fMRI Reveals Interactions between Dorsal and Ventral Attentional Systems.
    Leitão J; Thielscher A; Tünnerhoff J; Noppeney U
    J Neurosci; 2015 Aug; 35(32):11445-57. PubMed ID: 26269649
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-gamma activity in an attention network predicts individual differences in elderly adults' behavioral performance.
    Akimoto Y; Nozawa T; Kanno A; Ihara M; Goto T; Ogawa T; Kambara T; Sugiura M; Okumura E; Kawashima R
    Neuroimage; 2014 Oct; 100():290-300. PubMed ID: 24960420
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deconstructing the architecture of dorsal and ventral attention systems with dynamic causal modeling.
    Vossel S; Weidner R; Driver J; Friston KJ; Fink GR
    J Neurosci; 2012 Aug; 32(31):10637-48. PubMed ID: 22855813
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Trial history effects in the ventral attentional network.
    Scalf PE; Ahn J; Beck DM; Lleras A
    J Cogn Neurosci; 2014 Dec; 26(12):2789-97. PubMed ID: 24960047
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Top-down directed attention to stimulus features and attentional allocation to bottom-up deviations.
    Sawaki R; Katayama J
    J Vis; 2008 Nov; 8(15):4.1-8. PubMed ID: 19146288
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.