BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

426 related articles for article (PubMed ID: 23556562)

  • 1. Evaluating a linearized Euler equations model for strong turbulence effects on sound propagation.
    Ehrhardt L; Cheinet S; Juvé D; Blanc-Benon P
    J Acoust Soc Am; 2013 Apr; 133(4):1922-33. PubMed ID: 23556562
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unified modeling of turbulence effects on sound propagation.
    Cheinet S; Ehrhardt L; Juvé D; Blanc-Benon P
    J Acoust Soc Am; 2012 Oct; 132(4):2198-209. PubMed ID: 23039416
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The extended Fourier pseudospectral time-domain method for atmospheric sound propagation.
    Hornikx M; Waxler R; Forssén J
    J Acoust Soc Am; 2010 Oct; 128(4):1632-46. PubMed ID: 20968336
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experimental localization of an acoustic sound source in a wind-tunnel flow by using a numerical time-reversal technique.
    Padois T; Prax C; Valeau V; Marx D
    J Acoust Soc Am; 2012 Oct; 132(4):2397-407. PubMed ID: 23039435
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Broadband impedance boundary conditions for the simulation of sound propagation in the time domain.
    Bin J; Yousuff Hussaini M; Lee S
    J Acoust Soc Am; 2009 Feb; 125(2):664-75. PubMed ID: 19206844
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impulse propagation over a complex site: a comparison of experimental results and numerical predictions.
    Dragna D; Blanc-Benon P; Poisson F
    J Acoust Soc Am; 2014 Mar; 135(3):1096-105. PubMed ID: 24606253
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computational fluid dynamics simulation of sound propagation through a blade row.
    Zhao L; Qiao W; Ji L
    J Acoust Soc Am; 2012 Oct; 132(4):2210-7. PubMed ID: 23039417
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sound-wave coherence in atmospheric turbulence with intrinsic and global intermittency.
    Wilson DK; Ostashev VE; Goedecke GH
    J Acoust Soc Am; 2008 Aug; 124(2):743-57. PubMed ID: 18681567
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A finite difference method for a coupled model of wave propagation in poroelastic materials.
    Zhang Y; Song L; Deffenbaugh M; Toksöz MN
    J Acoust Soc Am; 2010 May; 127(5):2847-55. PubMed ID: 21117735
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A study of infrasound propagation based on high-order finite difference solutions of the Navier-Stokes equations.
    Marsden O; Bogey C; Bailly C
    J Acoust Soc Am; 2014 Mar; 135(3):1083-95. PubMed ID: 24606252
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Finite-difference time-domain synthesis of infrasound propagation through an absorbing atmosphere.
    de Groot-Hedlin C
    J Acoust Soc Am; 2008 Sep; 124(3):1430-41. PubMed ID: 19045635
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Numerical modeling of the sound propagation through a rarefied gas in a semi-infinite space on the basis of linearized kinetic equation.
    Sharipov F; Kalempa D
    J Acoust Soc Am; 2008 Oct; 124(4):1993-2001. PubMed ID: 19062839
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A higher-order split-step Fourier parabolic-equation sound propagation solution scheme.
    Lin YT; Duda TF
    J Acoust Soc Am; 2012 Aug; 132(2):EL61-7. PubMed ID: 22894317
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Temporal coherence of acoustic signals in a fluctuating ocean.
    Voronovich AG; Ostashev VE; Colosi JA
    J Acoust Soc Am; 2011 Jun; 129(6):3590-7. PubMed ID: 21682384
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mesoscale variations in acoustic signals induced by atmospheric gravity waves.
    Chunchuzov I; Kulichkov S; Perepelkin V; Ziemann A; Arnold K; Kniffka A
    J Acoust Soc Am; 2009 Feb; 125(2):651-63. PubMed ID: 19206843
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling power law absorption and dispersion for acoustic propagation using the fractional Laplacian.
    Treeby BE; Cox BT
    J Acoust Soc Am; 2010 May; 127(5):2741-48. PubMed ID: 21117722
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A higher-order tangent linear parabolic-equation solution of three-dimensional sound propagation.
    Lin YT
    J Acoust Soc Am; 2013 Aug; 134(2):EL251-7. PubMed ID: 23927233
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nonlinear synthesis of infrasound propagation through an inhomogeneous, absorbing atmosphere.
    de Groot-Hedlin CD
    J Acoust Soc Am; 2012 Aug; 132(2):646-56. PubMed ID: 22894187
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Numerical and analytical solutions for sound propagation and absorption in porous media at high sound pressure levels.
    Zhang B; Chen T; Zhao Y; Zhang W; Zhu J
    J Acoust Soc Am; 2012 Sep; 132(3):1436-49. PubMed ID: 22978873
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Long-range asymptotic behavior of vertical travel-time sensitivity kernels.
    Skarsoulis EK; Cornuelle BD; Dzieciuch MA
    J Acoust Soc Am; 2013 Oct; 134(4):3201-10. PubMed ID: 24116516
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.